WO2008031389A1 - Verfahren zum betreiben eines hybridantriebsstrangs für ein kraftfahrzeug - Google Patents

Verfahren zum betreiben eines hybridantriebsstrangs für ein kraftfahrzeug Download PDF

Info

Publication number
WO2008031389A1
WO2008031389A1 PCT/DE2007/001475 DE2007001475W WO2008031389A1 WO 2008031389 A1 WO2008031389 A1 WO 2008031389A1 DE 2007001475 W DE2007001475 W DE 2007001475W WO 2008031389 A1 WO2008031389 A1 WO 2008031389A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
input shaft
torque
electric machine
gear
Prior art date
Application number
PCT/DE2007/001475
Other languages
English (en)
French (fr)
Inventor
Martin Dilzer
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to DE112007001971T priority Critical patent/DE112007001971A5/de
Priority to CN2007800343226A priority patent/CN101516708B/zh
Publication of WO2008031389A1 publication Critical patent/WO2008031389A1/de
Priority to US12/403,471 priority patent/US7625311B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/004Mathematical models of vehicle sub-units of the clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0425Bridging torque interruption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0425Bridging torque interruption
    • F16H2061/0429Bridging torque interruption by torque supply with a clutch in parallel torque path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/946Characterized by control of driveline clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19233Plurality of counter shafts

Definitions

  • the invention relates to a method for operating a hybrid powertrain for a motor vehicle, wherein the hybrid powertrain comprises an internal combustion engine and an electric machine as drives and wherein in the hybrid powertrain a parallel shift transmission with a first transmission input shaft, a second transmission input shaft and a transmission output shaft is arranged, wherein the first transmission input shaft via at least one first gear and the second transmission input shaft via at least one second gear with the Gereteretesgangsswelie is coupled, wherein the internal combustion engine via a first clutch to the first transmission input shaft and via a second clutch with the second transmission input shaft can be brought into operative connection, and wherein the electric machine is in drive connection with the second transmission input shaft.
  • gear 1 can be engaged on the first transmission input shaft and the gears of the second transmission input shaft can be brought into neutral position. Then, the first and second clutches are closed to transmit torque to the drive wheels of the motor vehicle respectively by means of the internal combustion engine and the electric machine.
  • the power flow of the electric machine extends via the second transmission input shaft, the second clutch, the drive shaft of the internal combustion engine, the first clutch, the first transmission input shaft and the gear 1 to the transmission output shaft.
  • the preselection of a gear on the second input shaft takes place in this shift strategy while driving.
  • the internal combustion engine is switched from the first to the gear "2."
  • the second Clutch closed, while at the same time the first clutch is opened and the motor vehicle continues to be driven by the electric machine.
  • gearbox "3" is preselected on the first transmission input shaft 12.
  • the combustion engine is switched from gear “2" to gear "3.”
  • the first clutch is closed, while at the same time the second clutch is closed Clutch opened and the motor vehicle continues to be driven via the still engaged gear "2" with the electric machine.
  • the gear "4" is preselected on the second transmission input shaft, whereby the torque of the electric motor is first reduced to zero, then the gear "2" is brought into neutral position and then the gear "4" is engaged a torque is again generated by means of the electric machine and transmitted via the preselected gear "4" to the drive wheels of the motor vehicle.
  • the internal combustion engine is switched from the gear "3" to the gear "4".
  • the second clutch is closed while at the same time the first clutch is opened and the motor vehicle continues to be driven by the electric machine.
  • the method has the disadvantage that in a gear change to the second transmission input shaft, ie when switching from the gear “2" to the gear "4" and the gear "4" to the gear “6” from the electric machine no torque on the drive wheels can be transmitted, because then the part of the transmission formed by the second gears is temporarily in neutral position.
  • the concomitant loss of traction is perceived by the users of the motor vehicle as disadvantageous.
  • a method for operating a hybrid powertrain for a motor vehicle wherein the hybrid powertrain has an internal combustion engine and an electrical machine as drives and wherein in the hybrid powertrain a parallel Gearbox having a first transmission input shaft, a second transmission input shaft and a transmission output shaft is arranged, wherein the first transmission input shaft via at least a first gear and the second transmission input shaft via at least two second gears with the transmission output shaft is coupled, wherein the internal combustion engine via a first clutch with the first transmission input shaft and can be brought into operative connection with the second transmission input shaft via a second clutch, and wherein the electric machine is in drive connection with the second transmission input shaft,
  • clutch slip is established at the first clutch by reducing the torque transmitted by the first clutch while increasing the torque applied by the electric machine
  • the torque transmitted via the first clutch is reduced by partially opening the first clutch.
  • the speed of the internal combustion engine increases slightly, so that additional kinetic energy is stored in the internal combustion engine.
  • the reduction of the total torque transmitted to the transmission output shaft via the first clutch is compensated by correspondingly increasing the torque of the electric machine.
  • the acceleration of the motor vehicle can be kept approximately constant despite the reduced clutch torque of the first clutch.
  • Once a sufficient slip reserve exists - A - is, the torque of the electric machine is reduced to zero.
  • the reduction is compensated for by correspondingly increasing the torque transmitted via the first clutch. This reduces the slip on the first clutch.
  • the acceleration of the motor vehicle can be kept constant despite the lack of drive torque of the electric machine.
  • the above object is also achieved by a method for operating a hybrid powertrain for a motor vehicle, wherein the hybrid powertrain comprises an internal combustion engine and an electric machine as drives and wherein in the hybrid powertrain a parallel shift transmission having a first transmission input shaft, a second transmission input shaft and a transmission output shaft is arranged wherein the first transmission input shaft can be coupled to the transmission output shaft via at least one first gear and the second transmission input shaft via at least one second gear, wherein the internal combustion engine can be brought into operative connection with the first transmission input shaft via a first clutch and with the second transmission input shaft via a second clutch, and wherein the electric machine is in drive connection with the second transmission input shaft,
  • clutch slippage is established at the first clutch by increasing the torque applied by the electric machine, after which the slip on the first clutch is reduced by reducing the torque applied by the electric machine, opening the second clutch and engaging a second gear
  • the torque generated by the electric machine can be transmitted as well as via the second clutch to the internal combustion engine and from there via the first clutch to the first transmission input shaft and the transmission output shaft. Also in this solution, a slip is built up on the first clutch before the gear change by the torque generated by the electric machine is increased. Once a sufficient slip reserve is present, the torque of the electric machine is reduced, so that the slip is reduced at the first clutch. After the second gear has been engaged and synchronized, a torque is again transmitted to the transmission output shaft by means of the electric machine. Thus, even with this solution, the full traction is maintained without interruption during the switching process.
  • the torque of the electric machine is adapted to the clutch slip of the first clutch such that the torque transmitted via the first clutch remains approximately constant during the establishment of the clutch slip. The motor vehicle can then be accelerated evenly.
  • the slip of the first clutch is preferably reduced such that the torque transmitted to the transmission output shaft remains approximately constant from the beginning of reducing the torque applied by the electric machine to the end of the closing of the second clutch. Also by this measure, a uniform acceleration of the motor vehicle is made possible during the switching process.
  • FIG. 1 is a schematic representation of a hybrid powertrain of a motor vehicle
  • Fig. 2 is a graphical representation of transmitted via a transmission output shaft
  • Fig. 4 is a graphical representation of the rotational speeds of an internal combustion engine and two transmission input shafts, wherein the abscissa in seconds and the ordinate the speed in 1000 rpm is plotted on the abscissa.
  • a designated in Fig. 1 with 1 hybrid powertrain for a motor vehicle has as drives an internal combustion engine 2 and an electric machine 3, which via a parallel shift transmission with drive wheels not shown in detail in the drawing . Motor vehicle are connected.
  • the parallel shift transmission has a first transmission input shaft 4a which is connected via a first clutch 5a to a drive shaft 6, e.g. a crankshaft of the internal combustion engine 2 is connectable.
  • a second transmission input shaft 4b of the parallel shift transmission can be connected to the drive shaft 6 via a second clutch 5b.
  • the electric machine 3 is also in drive connection with the second transmission input shaft 4b.
  • the electric machine 3 may be arranged coaxially with the second transmission input shaft 4b or laterally spaced therefrom and connected via a chain or the like transmission means to the second transmission input shaft 4b.
  • the first transmission input shaft 4a are associated with the first, odd gears 1, 3 and 5 and a reverse gear. Each of these gears has in each case a transmission gear 7a, which is rotatably connected by means of the synchronization device 8 with the second transmission input shaft 4a and can be separated from this.
  • the transmission gears 7a of the gears 1, 3 and 5 each mesh with a mating, non-rotatably connected to a transmission output shaft 9 gear 10th
  • the second transmission input shaft 4b, the second, straight gears 2, 4 and 6 are assigned.
  • Each of these gears each has a transmission gear 7a, which by means of a synchronization device 8 rotatably connected to the first transmission input shaft 4a is connected and can be separated from this.
  • the gear wheels 7b of the gears 1, 3 and 5 mesh respectively with a matching gear rotatably connected to a transmission output shaft 9 gear 10th
  • both clutches 5a, 5b are initially opened for starting the motor vehicle.
  • the gear “1” is engaged on the first transmission input shaft 4a and the gear “2" is preselected on the second transmission input shaft 4b.
  • the first clutch 5a is closed to transmit a torque to the first transmission input shaft 4a by means of the internal combustion engine 2 and from there through the gear "1" to the transmission output shaft 9.
  • a torque is generated by means of the electric machine 3 and via the second Transmission input shaft 4a and the preselected gear “2" transmitted to the transmission output shaft 9 (boost function).
  • the combustion engine 2 is switched from the gear "1" to the gear "2".
  • the second clutch 5b is closed, while at the same time the first clutch 5a is opened and the motor vehicle continues to be driven by the electric machine.
  • the gear “3" is preselected on the first transmission input shaft 4a
  • the combustion engine 2 is switched from the gear “2" to the gear "3.”
  • the first clutch 4a is closed, while at the same time the second clutch 5b is opened and the motor vehicle continues to be driven via the still engaged gear "2" with the electric machine 3.
  • the first clutch 5a is slightly opened in order to generate a slip and to reduce the torque 11 transmitted via the first clutch 5a.
  • Fig. 3 it can be seen that the speed 12 of the internal combustion engine 2 increases slightly by the torque reduction.
  • the torque 13 applied by the electric machine 3 is correspondingly obtained. increases, so that on the transmission output shaft 9 total transmitted torque 14 remains approximately constant (see Fig. 2 to 4).
  • the torque of the internal combustion engine 2 is designated 15 in FIG. 3.
  • the gear "4" is preselected and synchronized on the second transmission input shaft 4b, whereby the rotational speed 16 of the second transmission input shaft 4b decreases generates a torque 13 and transmitted to the transmission output shaft 9 via the second transmission input shaft 4a and the preselected gear "4".
  • the torque 13 of the electric machine 3 is increased in a ramp, while at the same time the transmitted via the first clutch 5a torque 11 by opening the first clutch 5a is reduced accordingly, so that the total transferred to the transmission output shaft 9 torque 14 remains approximately constant.
  • the rotational speed of the first transmission input shaft 4a is denoted by 17 in FIG.
  • the first clutch 5a is opened and the second clutch 5b is closed so that the internal combustion engine 2 then drives the transmission output shaft 9 via the second clutch 5b, the second transmission input shaft 4b and the gear "4".
  • both clutches 5a, 5b are initially opened for starting the motor vehicle.
  • the gear “1” is engaged and the gears "2", “4" and “6" of the second transmission input shaft 4b are brought into neutral position.
  • the first clutch 5a and the second clutch 5b are closed to transmit a torque to the drive wheels of the motor vehicle by means of the internal combustion engine 2 and the electric machine 3, respectively.
  • the power flow of the electric machine 3 extends via the second transmission input shaft 4b, the second clutch 5b, the drive shaft 6 of the internal combustion engine 2, the first clutch 5a, the first transmission input shaft 4a and the gear "1" on the transmission output shaft 9.
  • the second clutch 5b is opened to select the gear "2" on the second input shaft 4b thereafter.
  • the combustion engine 2 is switched from the gear “1" to the gear "2".
  • the second clutch 5b is closed, while at the same time the first clutch 5a is opened.
  • Hybrid drivetrain Internal combustion engine Electric machine a first transmission input shaft b second transmission input shaft a first clutch b second clutch drive shaft a transmission gearwheel b transmission gear synchronization device transmission output shaft 0 gear 1 torque transmitted by the first clutch 2 speed of the internal combustion engine 3 torque of the electric machine 4 torque of the transmission output shaft 5 torque of the internal combustion engine 6 Speed of the second transmission input shaft 7 Speed of the first transmission input shaft

Abstract

Ein Verfahren zum Betreiben eines Hybridantriebsstrangs (1), der eine Verbrennungsmaschine (2) und eine elektrische Maschine (3) als Antriebe und ein Parallelschaltgetriebe mit einer ersten Getriebeeingangswelle, (4a) einer zweiten Getriebeeingangswelle (4b) und einer Getriebeausgangswelle (9) aufweist, wobei die erste Getriebeeingangswelle über mindestens einen ersten Gang und die zweite Getriebeeingangswelle über mindestens zwei zweite Gänge mit der Getriebeausgangswelle koppelbar ist, wobei die Verbrennungsmaschine über eine erste Kupplung mit der ersten Getriebeeingangswelle und über eine zweite Kupplung mit der zweiten Getriebeeingangswelle in Wirkverbindung bringbar ist, und wobei die elektrische Maschine mit der zweiten Getriebeeingangswelle in Antriebsverbindung steht. Einlegen eines ersten Gangs. Mittels der Verbrennungsmaschine wird über die erste Kupplung ein Drehmoment an die erste Getriebeeingangswelle angelegt. Einlegen eines zweiten Gangs. Mittels der elektrischen Maschine wird ein Drehmoment an die Getriebeausgangswelle angelegt. Das über die erste Kupplung übertragene Drehmoment wird durch Aufbauen von Kupplungsschlupf reduziert, während das Drehmoment der elektrischen Maschine erhöht wird. Das Drehmoment der elektrischen Maschine wird auf null reduziert und es wird ein zweiter zweiter Gang eingelegt, während das über die erste Kupplung übertragene Drehmoment durch Reduzieren des Schlupfs an der ersten Kupplung erhöht wird. Mittels der elektrischen Maschine wird ein Drehmoment auf die Getriebeausgangswelle übertragen.

Description

Verfahren zum Betreiben eines Hvbridantriebsstrangs für ein Kraftfahrzeug
Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybridantriebsstrangs für ein Kraftfahrzeug, wobei der Hybridantriebsstrang eine Verbrennungsmaschine und eine elektrische Maschine als Antriebe aufweist und wobei in dem Hybridantriebsstrang ein Parallelschaltgetriebe mit einer ersten Getriebeeingangswelle, einer zweiten Getriebeeingangswelle und einer Getriebeausgangswelle angeordnet ist, wobei die erste Getriebeeingangswelle über mindestens einen ersten Gang und die zweite Getriebeeingangswelle über mindestens einen zweiten Gang mit der Getriebeausgangswelie koppelbar ist, wobei die Verbrennungsmaschine über eine erste Kupplung mit der ersten Getriebeeingangswelle und über eine zweite Kupplung mit der zweiten Getriebeeingangswelle in Wirkverbindung bringbar ist, und wobei die elektrische Maschine mit der zweiten Getriebeeingangswelle in Antriebsverbindung steht.
Ein derartiges Verfahren ist aus dem Buch „7. LuK Kolloquium 11./12. April 2002", Herausgeber: LuK GmbH & Co., Seite 252-254 bekannt. Dabei wird zum Anfahren des Kraftfahrzeugs zunächst bei geöffneter erster und zweiter Kupplung an der ersten Getriebeeingangswelle der Gang „1" eingelegt und an der zweiten Getriebeeingangswelle der Gang „2" vorgewählt. Dann wird die erste Kupplung geschlossen, um mittels der Verbrennungsmaschine ein Drehmoment auf die Antriebsräder des Kraftfahrzeugs zu übertragen. Zusätzlich werden die Antriebsräder mittels der elektrischen Maschine über die zweite Getriebeeingangswelle und den vorgewählten Gang „2" angetrieben (Boost-Funktion).
Alternativ dazu können bei geöffneter erster Kupplung an der ersten Getriebeeingangswelle der Gang 1 eingelegt und die Gänge der zweiten Getriebeeingangswelle in Neutralstellung gebracht werden. Dann werden die erste und zweite Kupplung geschlossen, um mittels der Verbrennungsmaschine und der elektrischen Maschine jeweils ein Drehmoment auf die Antriebsräder des Kraftfahrzeugs zu übertragen. Der Kraftfluss der elektrischen Maschine verläuft dabei über die zweite Getriebeeingangswelle, die zweite Kupplung, die Antriebswelle der Verbrennungsmaschine, die erste Kupplung, die erste Getriebeeingangswelle und den Gang 1 auf die Getriebeausgangswelle. Das Vorwählen eines Gangs an der zweiten Eingangswelle erfolgt bei dieser Schaltstrategie während der Fahrt.
Nachdem das Kraftfahrzeug eine vorgegebene erste Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine vom ersten auf den Gang „2" umgeschaltet. Dazu wird die zweite Kupplung geschlossen, während gleichzeitig die erste Kupplung geöffnet und das Kraftfahrzeug weiterhin auch mit der elektrischen Maschine angetrieben wird.
Nun wird an der ersten Getriebeeingangswelle der Gang „3" vorgewählt. Nachdem das Kraftfahrzeug eine vorgegebene zweite Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine vom Gang „2" auf den Gang „3" umgeschaltet. Dazu wird die erste Kupplung geschlossen, während gleichzeitig die zweite Kupplung geöffnet und das Kraftfahrzeug weiterhin über den noch eingelegten Gang „2" auch mit der elektrischen Maschine angetrieben wird.
Nun wird an der zweiten Getriebeeingangswelle bei weiterhin geöffneter zweiter Kupplung der Gang „4" vorgewählt. Dabei wird zunächst das Drehmoment des Elektromotors auf null reduziert, danach wird der Gang „2" in Neutralstellung gebracht und dann wird der Gang „4" eingelegt. Danach wird mittels der elektrischen Maschine erneut ein Drehmoment erzeugt und über den vorgewählten Gang „4" auf die Antriebsräder des Kraftfahrzeugs übertragen.
Nachdem das Kraftfahrzeug eine vorgegebene dritte Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine vom Gang „3" auf den Gang „4" umgeschaltet. Dazu wird die zweite Kupplung geschlossen, während gleichzeitig die erste Kupplung geöffnet und das Kraftfahrzeug weiterhin auch mit der elektrischen Maschine angetrieben wird. Beim weiteren Beschleunigen des Kraftfahrzeugs wird in entsprechender Weise vom Gang „4" In den Gang „5" und von diesem in den Gang „6" geschaltet.
Das Verfahren hat den Nachteil, dass bei einem Gangwechsel an der zweiten Getriebeeingangswelle, also beim Umschalten vom Gang „2" auf den Gang „4" und vom Gang „4" auf den Gang „6" von der elektrischen Maschine kein Drehmoment auf die Antriebsräder übertragen werden kann, weil sich dann das durch die zweiten Gänge gebildete Teilgetriebe vorübergehend in Neutralstellung befindet. Der damit einhergehende Zugkraftverlust wird von den Benutzern des Kraftfahrzeugs als nachteilig empfunden.
Es besteht deshalb die Aufgabe, ein Verfahren der eingangsgenannten Art zu schaffen, bei dem während des Schaltens eines zweiten Gangs bei zuvor zugeschalteter elektrischer Maschine ein Zugkraftverlust weitestgehend vermieden wird.
Diese Aufgabe wird gelöst durch ein Verfahren zum Betreiben eines Hybridantriebsstrangs für ein Kraftfahrzeug, wobei der Hybridantriebsstrang eine Verbrennungsmaschine und eine e- lektrische Maschine als Antriebe aufweist und wobei in dem Hybridantriebsstrang ein Parallel- Schaltgetriebe mit einer ersten Getriebeeingangswelle, einer zweiten Getriebeeingangswelle und einer Getriebeausgangswelle angeordnet ist, wobei die erste Getriebeeingangswelle über mindestens einen ersten Gang und die zweite Getriebeeingangswelle über mindestens zwei zweite Gänge mit der Getriebeausgangswelle koppelbar ist, wobei die Verbrennungsmaschine über eine erste Kupplung mit der ersten Getriebeeingangswelle und über eine zweite Kupplung mit der zweiten Getriebeeingangswelle in Wirkverbindung bringbar ist, und wobei die e- lektrische Maschine mit der zweiten Getriebeeingangswelle in Antriebsverbindung steht,
wobei ein erster Gang eingelegt und mittels der Verbrennungsmaschine über die erste Kupplung ein Drehmoment an die erste Getriebeeingangswelle angelegt wird,
wobei bei geöffneter zweiter Kupplung ein erster zweiter Gang eingelegt und mittels der elektrischen Maschine über die erste Getriebeeingangswelle und den ersten zweiten Gang ein Drehmoment an die Getriebeausgangswelle angelegt wird,
wobei an der ersten Kupplung Kupplungsschlupf aufgebaut wird, indem das von der ersten Kupplung übertragene Drehmoment reduziert wird, während das von der elektrischen Maschine aufgebrachte Drehmoment erhöht wird,
wobei danach das von der elektrischen Maschine aufgebrachte Drehmoment in etwa auf null reduziert und ein zweiter zweiter Gang eingelegt wird, während der Schlupf an der ersten Kupplung reduziert wird, indem das über die erste Kupplung übertragene Drehmoment erhöht wird, und
wobei danach mittels der elektrischen Maschine über die erste Getriebeeingangswelle und den zweiten zweiten Gang ein Drehmoment auf die Getriebeausgangswelle übertragen wird.
Bevor mit dem Gangwechsel begonnen wird, wird also das über die erste Kupplung übertragene Drehmoment durch teilweises Öffnen der ersten Kupplung reduziert. Dabei nimmt die Drehzahl der Verbrennungsmaschine etwas zu, so dass zusätzliche kinetische Energie in der Verbrennungsmaschine gespeichert wird. Die Reduzierung des über die erste Kupplung auf die Getriebeausgangswelle übertragenen Gesamtdrehmoments wird durch entsprechendes Erhöhen des Drehmoments der elektrischen Maschine kompensiert. Somit kann die Beschleunigung des Kraftfahrzeugs trotz des reduzierten Kupplungsmoments der ersten Kupplung in etwa konstant gehalten werden. Sobald eine ausreichende Schlupfreserve vorhanden - A - ist, wird das Drehmoment der elektrischen Maschine auf null reduziert. Die Reduzierung wird durch entsprechendes Erhöhen des über die erste Kupplung übertragenen Drehmoments kompensiert. Dabei reduziert sich der Schlupf an der ersten Kupplung. Somit kann die Beschleunigung des Kraftfahrzeugs trotz des fehlenden Antriebsmoments der elektrischen Maschine konstant gehalten werden. Nachdem der zweite zweite Gang eingelegt und synchronisiert wurde, wird mittels der elektrischen Maschine wieder ein Drehmoment auf die Getriebeausgangswelle übertragen. Das über die erste Kupplung und ggf. die zweite Kupplung von der Verbrennungsmaschine auf die Getriebeausgangswelle übertragene Drehmoment wird entsprechend reduziert. Somit bleibt im Boost-Betrieb des Hybridantriebsstrangs während des Schaltvorgangs die volle Zugkraft ohne Unterbrechung erhalten.
Die vorstehend genannte Aufgabe wird außerdem gelöst durch ein Verfahren zum Betreiben eines Hybridantriebsstrangs für ein Kraftfahrzeug, wobei der Hybridantriebsstrang eine Verbrennungsmaschine und eine elektrische Maschine als Antriebe aufweist und wobei in dem Hybridantriebsstrang ein Parallelschaltgetriebe mit einer ersten Getriebeeingangswelle, einer zweiten Getriebeeingangswelle und einer Getriebeausgangswelle angeordnet ist, wobei die erste Getriebeeingangswelle über mindestens einen ersten Gang und die zweite Getriebeeingangswelle über mindestens einen zweiten Gang mit der Getriebeausgangswelle koppelbar ist, wobei die Verbrennungsmaschine über eine erste Kupplung mit der ersten Getriebeeingangswelle und über eine zweite Kupplung mit der zweiten Getriebeeingangswelle in Wirkverbindung bringbar ist, und wobei die elektrische Maschine mit der zweiten Getriebeeingangswelle in Antriebsverbindung steht,
wobei ein erster Gang eingelegt und mittels der Verbrennungsmaschine über die erste Kupplung ein Drehmoment an die erste Getriebeeingangswelle angelegt wird,
wobei bei in Neutralstellung befindlichem mindestens einen zweiten Gang mittels der elektrischen Maschine über die zweite Getriebeeingangswelle, die zweite Kupplung und die erste Kupplung ein Drehmoment an die erste Getriebeeingangswelle angelegt wird,
wobei an der ersten Kupplung ein Kupplungsschlupf aufgebaut wird, während das von der elektrischen Maschine aufgebrachte Drehmoment erhöht wird,
wobei an der ersten Kupplung ein Kupplungsschlupf aufgebaut wird, indem das von der elektrischen Maschine aufgebrachte Drehmoment erhöht wird, wobei danach der Schlupf an der ersten Kupplung reduziert wird, indem das von der elektrischen Maschine aufgebrachte Drehmoment reduziert, die zweite Kupplung geöffnet und ein zweiter Gang eingelegt wird, und
wobei mittels der elektrischen Maschine über die erste Getriebeeingangswelle und den zweiten Gang ein Drehmoment auf die Getriebeausgangswelle übertragen wird.
Das mit der elektrischen Maschine erzeugte Drehmoment kann als auch über die zweite Kupplung auf die Verbrennungsmaschine und von dieser über die erste Kupplung auf die erste Getriebeeingangswelle und die Getriebeausgangswelle übertragen werden. Auch bei dieser Lösung wird vor dem Gangwechsel ein Schlupf an der ersten Kupplung aufgebaut, indem das von der elektrischen Maschine erzeugte Drehmoment erhöht wird. Sobald eine ausreichende Schlupfreserve vorhanden ist, wird das Drehmoment der elektrischen Maschine reduziert, so dass der Schlupf an der ersten Kupplung abgebaut wird. Nachdem der zweite Gang eingelegt und synchronisiert wurde, wird mittels der elektrischen Maschine wieder ein Drehmoment auf die Getriebeausgangswelle übertragen. Somit bleibt auch bei dieser Lösung während des Schaltvorgangs die volle Zugkraft ohne Unterbrechung erhalten.
Vorteilhaft ist, wenn das Drehmoment der elektrischen Maschine derart an den Kupplungsschlupf der ersten Kupplung angepasst wird, dass das über die erste Kupplung übertragene Drehmoment während des Aufbauens des Kupplungsschlupfs in etwa konstant bleibt. Das Kraftfahrzeug kann dann noch gleichmäßiger beschleunigt werden.
Der Schlupf der ersten Kupplung wird bevorzugt derart reduziert, dass das auf die Getriebeausgangswelle übertragene Drehmoment vom Beginn des Reduzierens des von der elektrischen Maschine aufgebrachten Drehmoments bis zum Ende des Schließens der zweiten Kupplung in etwa konstant bleibt. Auch durch diese Maßnahme wird während des Schaltvorgangs ein gleichmäßiges Beschleunigen des Kraftfahrzeugs ermöglicht.
Vorteilhaft ist, wenn das Drehmoment der elektrischen Maschine rampenförmig erhöht und/oder reduziert wird. Der Schlupf in der ersten Kupplung kann dann gleichmäßig auf- und abgebaut werden.
Nachfolgend ist ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es zeigt: Fig. 1 eine schematische Darstellung eines Hybridantriebsstrangs eines Kraftfahrzeugs,
Fig. 2 eine graphische Darstellung des über eine Getriebeausgangswelle übertragenen
Gesamtdrehmoments, wobei auf der Abszisse die Zeit in Sekunden und auf der Ordinate das Drehmoment in Nm aufgetragen ist,
Fig. 3 eine graphische Darstellung des von einer Verbrennungsmaschine erzeugten
Drehmoments (obere Kurve), eines über eine erste Kupplung übertragenen Drehmoments (mittlere Kurve) und eines von einer elektrischen Maschine erzeugten Drehmoments (untere Kurve), wobei auf der Abszisse die Zeit in Sekunden und auf der Ordinate das Drehmoment in Nm aufgetragen ist, und
Fig. 4 eine graphische Darstellung der Drehzahlen einer Verbrennungskraftmaschine und zweier Getriebeeingangswellen, wobei auf der Abszisse die Zeit in Sekunden und auf der Ordinate die Drehzahl in 1000 U/min aufgetragen ist.
Ein in Fig. 1 mit 1 bezeichneter Hybridantriebsstrang für ein Kraftfahrzeug hat als Antriebe eine Verbrennungsmaschine 2 und eine elektrische Maschine 3, die über ein Parallelschaltgetriebe mit in der Zeichnung nicht näher dargestellten Antriebsrädern des. Kraftfahrzeugs verbunden sind.
Das Parallelschaltgetriebe hat eine erste Getriebeeingangswelle 4a, die über eine erste Kupplung 5a mit einer Antriebswelle 6, wie z.B. einer Kurbelwelle der Verbrennungsmaschine 2 verbindbar ist. Eine zweite Getriebeeingangswelle 4b des Parallelschaltgetriebes ist über eine zweite Kupplung 5b mit der Antriebswelle 6 verbindbar. Die elektrische Maschine 3 steht außerdem mit der zweiten Getriebeeingangswelle 4b in Antriebsverbindung. Die elektrische Maschine 3 kann koaxial zu der zweiten Getriebeeingangswelle 4b angeordnet oder seitlich von dieser beabstandet und über eine Kette oder dergleichen Übertragungsmittel mit der zweiten Getriebeeingangswelle 4b verbunden sein.
Der ersten Getriebeeingangswelle 4a sind die ersten, ungeraden Gänge 1 , 3 und 5 sowie ein Rückwärtsgang zugeordnet. Jeder dieser Gänge hat jeweils ein Getriebezahnrad 7a, das mittels der Synchronisationseinrichtung 8 drehfest mit der zweiten Getriebeeingangswelle 4a verbindbar ist und von dieser getrennt werden kann. Die Getriebezahnräder 7a der Gänge 1 , 3 und 5 kämmen jeweils mit einem dazu passenden, drehfest mit einer Getriebeausgangswelle 9 verbundenen Zahnrad 10.
Der zweiten Getriebeeingangswelle 4b sind die zweiten, geraden Gänge 2, 4 und 6 zugeordnet. Jeder dieser Gänge hat jeweils ein Getriebezahnrad 7a, das mittels einer Synchronisationseinrichtung 8 drehfest mit der ersten Getriebeeingangswelle 4a verbindbar ist und von dieser getrennt werden kann. Die Getriebezahnräder 7b der Gänge 1, 3 und 5 kämmen jeweils mit einem dazu passenden, drehfest mit einer Getriebeausgangswelle 9 verbundenen Zahnrad 10.
Bei einer ersten Schaltstrategie werden zum Anfahren des Kraftfahrzeugs zunächst beide Kupplungen 5a, 5b geöffnet. An der ersten Getriebeeingangsweile 4a wird der Gang „1" eingelegt und an der zweiten Getriebeeingangswelle 4b der Gang „2" vorgewählt. Dann wird die erste Kupplung 5a geschlossen, um mittels der Verbrennungsmaschine 2 ein Drehmoment auf die erste Getriebeeingangswelle 4a und von dieser über den Gang „1" auf die Getriebeausgangswelle 9 zu übertragen. Zusätzlich wird mittels der elektrischen Maschine 3 ein Drehmoment erzeugt und über die zweite Getriebeeingangswelle 4a und den vorgewählten Gang „2" auf die Getriebeausgangswelle 9 übertragen (Boost-Funktion).
Nachdem das Kraftfahrzeug eine vorgegebene erste Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine 2 vom Gang „1" auf den Gang „2" umgeschaltet. Dazu wird die zweite Kupplung 5b geschlossen, während gleichzeitig die erste Kupplung 5a geöffnet und das Kraftfahrzeug weiterhin auch mit der elektrischen Maschine angetrieben wird.
Nun wird an der ersten Getriebeeingangswelle 4a der Gang „3" vorgewählt. Nachdem das Kraftfahrzeug eine vorgegebene zweite Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine 2 vom Gang „2" auf den Gang „3" umgeschaltet. Dazu wird die erste Kupplung 4a geschlossen, während gleichzeitig die zweite Kupplung 5b geöffnet und das Kraftfahrzeug weiterhin über den noch eingelegten Gang „2" auch mit der elektrischen Maschine 3 angetrieben wird.
Sobald das Kraftfahrzeug eine vorgegebene dritte Geschwindigkeit erreicht hat, wird die erste Kupplung 5a etwas geöffnet, um einen Schlupf zu erzeugen und das über die erste Kupplung 5a übertragene Drehmoment 11 zu reduzieren. In Fig. 3 ist erkennbar, dass durch die Drehmomentreduzierung die Drehzahl 12 der Verbrennungsmaschine 2 etwas zunimmt. Gleichzeitig wird das von der elektrischen Maschine 3 aufgebrachte Drehmoment 13 entsprechend er- höht, so dass das auf die Getriebeausgangswelle 9 insgesamt übertragene Drehmoment 14 in etwa konstant bleibt (siehe Fig. 2 bis 4). Das Drehmoment der Verbrennungsmaschine 2 ist in Fig. 3 mit 15 bezeichnet.
Nachdem ein ausreichender Schlupf aufgebaut wurde, wird das von der elektrischen Maschine 3 aufgebrachte Drehmoment 13 rampenförmig reduziert und gleichzeitig wird das über die erste Kupplung 5a übertragene Drehmoment 11 erhöht, so dass sich der Schlupf an der ersten Kupplung 5a reduziert. In Fig. 4 ist erkennbar, dass dabei die Drehzahl 12 der Verbrennungsmaschine 2 etwas abnimmt.
Nachdem das Drehmoment 12 der elektrischen Maschine 3 auf einen Wert nahe null reduziert wurde, wird an der zweiten Getriebeeingangswelle 4b der Gang „4" vorgewählt und synchronisiert. Dabei nimmt die Drehzahl 16 der zweiten Getriebeeingangswelle 4b ab. Danach wird mittels der elektrischen Maschine 3 erneut ein Drehmoment 13 erzeugt und über die zweite Getriebeeingangswelle 4a und den vorgewählten Gang „4" auf die Getriebeausgangswelle 9 übertragen. Das Drehmoment 13 der elektrischen Maschine 3 wird rampenförmig erhöht, während gleichzeitig das über die erste Kupplung 5a übertragene Drehmoment 11 durch Öffnen der ersten Kupplung 5a entsprechend reduziert wird, so dass das insgesamt auf die Getriebeausgangswelle 9 übertragene Drehmoment 14 in etwa konstant bleibt. Die Drehzahl der ersten Getriebeeingangswelle 4a ist in Fig. 4 mit 17 bezeichnet.
Sobald das Kraftfahrzeug eine vorgegebene vierte Geschwindigkeit erreicht hat, wird die erste Kupplung 5a geöffnet und die zweite Kupplung 5b geschlossen, so dass die Verbrennungsmaschine 2 dann über die zweite Kupplung 5b, die zweite Getriebeeingangswelle 4b und den Gang „4" die Getriebeausgangswelle 9 antreibt.
Bei einer zweiten Schaltstrategie werden zum Anfahren des Kraftfahrzeugs zunächst beide Kupplungen 5a, 5b geöffnet. An der ersten Getriebeeingangswelle 4a wird der Gang „1" eingelegt und die Gänge „2", „4" und „6" der zweiten Getriebeeingangswelle 4b werden in Neutralstellung gebracht. Dann werden die erste Kupplung 5a und zweite Kupplung 5b geschlossen, um mittels der Verbrennungsmaschine 2 und der elektrischen Maschine 3 jeweils ein Drehmoment auf die Antriebsräder des Kraftfahrzeugs zu übertragen. Der Kraftfluss der elektrischen Maschine 3 verläuft dabei über die zweite Getriebeeingangswelle 4b, die zweite Kupplung 5b, die Antriebswelle 6 der Verbrennungsmaschine 2, die erste Kupplung 5a, die erste Getriebeeingangswelle 4a und den Gang „1" auf die Getriebeausgangswelle 9. Während der Fahrt wird das Drehmoment der elektrischen Maschine 3 auf null reduziert, die zweite Kupplung 5b geöffnet, um danach an der zweiten Eingangswelle 4b den Gang „2" vorzuwählen.
Nachdem das Kraftfahrzeug eine vorgegebene erste Geschwindigkeit erreicht hat, wird die Verbrennungsmaschine 2 vom Gang „1" auf den Gang „2" umgeschaltet. Dazu wird die zweite Kupplung 5b geschlossen, während gleichzeitig die erste Kupplung 5a geöffnet wird.
Bezugszeichenliste
Hybridantriebsstrang Verbrennungsmaschine elektrische Maschine a erste Getriebeeingangswelle b zweite Getriebeeingangswelle a erste Kupplung b zweite Kupplung Antriebswelle a Getriebezahnrad b Getriebezahnrad Synchronisationseinrichtung Getriebeausgangswelle 0 Zahnrad 1 von der ersten Kupplung übertragenes Drehmoment 2 Drehzahl der Verbrennungsmaschine 3 Drehmoment der elektrischen Maschine 4 Drehmoment der Getriebeausgangswelle 5 Drehmoment der Verbrennungsmaschine 6 Drehzahl der zweiten Getriebeeingangswelle7 Drehzahl der ersten Getriebeeingangswelle

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Hybridantriebsstrangs (1 ) für ein Kraftfahrzeug, wobei der Hybridantriebsstrang (1) eine Verbrennungsmaschine (2) und eine elektrische Maschine (3) als Antriebe aufweist und wobei in dem Hybridantriebsstrang (1 ) ein Parallelschaltgetriebe mit einer ersten Getriebeeingangswelle (4a), einer zweiten Getriebeeingangswelle (4b) und einer Getriebeausgangswelle (9) angeordnet ist, wobei die erste Getriebeeingangswelle (4a) über mindestens einen ersten Gang und die zweite Getriebeeingangswelle (4b) über mindestens zwei zweite Gänge mit der Getriebeausgangswelle (9) koppelbar ist, wobei die Verbrennungsmaschine (2) über eine erste Kupplung (5a) mit der ersten Getriebeeingangswelle (4a) und über eine zweite Kupplung (5b) mit der zweiten Getriebeeingangswelle (4b) in Wirkverbindung bringbar ist, und wobei die elektrische Maschine (3) mit der zweiten Getriebeeingangswelle (4b) in Antriebsverbindung steht, wobei ein erster Gang eingelegt und mittels der Verbrennungsmaschine (2) über die erste Kupplung (5a) ein Drehmoment (15) an die erste Getriebeeingangswelle (4a) angelegt wird, wobei bei geöffneter zweiter Kupplung (5b) erster zweiter Gang eingelegt und mittels der elektrischen Maschine (3) über die erste Getriebeeingangswelle (4a) und den ersten zweiten Gang ein Drehmoment (13) an die Getriebeausgangswelle (9) angelegt wird, wobei an der ersten Kupplung (5a) Kupplungsschlupf aufgebaut wird, indem das von der ersten Kupplung (5a) übertragene Drehmoment reduziert wird, während das von der elektrischen Maschine (3) aufgebrachte Drehmoment (13) erhöht wird, wobei danach das von der elektrischen Maschine (3) aufgebrachte Drehmoment (13) in etwa auf null reduziert und ein zweiter zweiter Gang eingelegt wird, während der Schlupf an der ersten Kupplung (5a) reduziert wird, indem das über die erste Kupplung (5a) übertragene Drehmoment (11) erhöht wird, und wobei mittels der elektrischen Maschine (3) über die erste Getriebeeingangswelle (4a) und den zweiten zweiten Gang ein Drehmoment (13) auf die Getriebeausgangswelle (9) übertragen wird.
2. Verfahren zum Betreiben eines Hybridantriebsstrangs (1) für ein Kraftfahrzeug, wobei der Hybridantriebsstrang (1) eine Verbrennungsmaschine (2) und eine elektrische Maschine (3) als Antriebe aufweist und wobei in dem Hybridantriebsstrang (1) ein Parallelschaltgetriebe mit einer ersten Getriebeeingangswelle (4a), einer zweiten Getriebe- eingangswelie (4b) und einer Getriebeausgangswelle (9) angeordnet ist, wobei die erste Getriebeeingangswelle (4a) über mindestens einen ersten Gang und die zweite Getriebeeingangswelle (4b) über mindestens einen zweiten Gang mit der Getriebeausgangswelle (9) koppelbar ist, wobei die Verbrennungsmaschine (2) über eine erste Kupplung (5a) mit der ersten Getriebeeingangswelle (4a) und über eine zweite Kupplung (5b) mit der zweiten Getriebeeingangswelle (4b) in Wirkverbindung bringbar ist, und wobei die elektrische Maschine (3) mit der zweiten Getriebeeingangswelle (4b) in Antriebsverbindung steht, wobei ein erster Gang eingelegt und mittels der Verbrennungsmaschine (2) über die erste Kupplung (5a) ein Drehmoment (15) an die erste Getriebeeingangswelle
(4a) angelegt wird, wobei bei in Neutralstellung befindlichem mindestens einen zweiten Gang mittels der elektrischen Maschine (3) über die zweite Getriebeeingangswelle (4b), die zweite Kupplung (5b) und die erste Kupplung (5a) ein Drehmoment (13) an die erste Getriebeeingangswelle (4a) angelegt wird, wobei an der ersten Kupplung (5a) ein Kupplungsschlupf aufgebaut wird, indem das von der elektrischen Maschine (3) aufgebrachte Drehmoment (13) erhöht wird, wobei danach der Schlupf an der ersten Kupplung (5a) reduziert wird, indem das von der elektrischen Maschine (3) aufgebrachte Drehmoment (13) reduziert, die zweite Kupplung (5b) geöffnet und ein zweiter Gang eingelegt wird, und wobei mittels der elektrischen Maschine (3) über die erste Getriebeeingangswelle
(4a) und den zweiten Gang ein Drehmoment (13) auf die Getriebeausgangswelle
(9) übertragen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Drehmoment (13) der elektrischen Maschine (3) derart an den Kupplungsschlupf der ersten Kupplung (5a) angepasst wird, dass das über die erste Kupplung (5a) übertragene Drehmoment (11 ) während des Aufbauens des Kupplungsschlupfs in etwa konstant bleibt.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der Schlupf der ersten Kupplung (5a) derart reduziert wird, dass das auf die Getriebeausgangswelle (9) übertragene Drehmoment (14) vom Beginn des Reduzierens des von der elektrischen Maschine (3) aufgebrachte Drehmoments (13) bis zum Ende des Schließens der zweiten Kupplung (5b) in etwa konstant bleibt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das
Drehmoment (13) der elektrischen Maschine (3) rampenförmig erhöht und/oder redu ziert wird.
PCT/DE2007/001475 2006-09-15 2007-08-20 Verfahren zum betreiben eines hybridantriebsstrangs für ein kraftfahrzeug WO2008031389A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007001971T DE112007001971A5 (de) 2006-09-15 2007-08-20 Verfahren zum Betreiben eines Hybridantriebsstrangs für ein Kraftfahrzeug
CN2007800343226A CN101516708B (zh) 2006-09-15 2007-08-20 用来运行用于机动车的混合动力总成系统的方法
US12/403,471 US7625311B2 (en) 2006-09-15 2009-03-13 Method for the operation of a hybrid drive train in a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043329.7 2006-09-15
DE102006043329 2006-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/403,471 Continuation US7625311B2 (en) 2006-09-15 2009-03-13 Method for the operation of a hybrid drive train in a motor vehicle

Publications (1)

Publication Number Publication Date
WO2008031389A1 true WO2008031389A1 (de) 2008-03-20

Family

ID=39047606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001475 WO2008031389A1 (de) 2006-09-15 2007-08-20 Verfahren zum betreiben eines hybridantriebsstrangs für ein kraftfahrzeug

Country Status (4)

Country Link
US (1) US7625311B2 (de)
CN (1) CN101516708B (de)
DE (1) DE112007001971A5 (de)
WO (1) WO2008031389A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2481956A1 (de) * 2009-09-24 2012-08-01 Aisin Seiki Kabushiki Kaisha Schiebevorrichtung für ein fahrzeug
CN103223860A (zh) * 2013-04-18 2013-07-31 吉林大学 针对家用轿车的插电式混合动力驱动装置
CN103978976A (zh) * 2013-02-12 2014-08-13 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于操作混合动力双离合器变速器传动系统的方法
WO2015113422A1 (zh) * 2014-01-30 2015-08-06 比亚迪股份有限公司 车辆及其动力传动系统
DE102014203243A1 (de) * 2014-02-24 2015-08-27 Zf Friedrichshafen Ag Anordnung aus einem Getriebe und einer elektrischen Maschine für einen Hybridantrieb und Hybridantrieb
US9421966B2 (en) 2014-10-20 2016-08-23 Byd Company Limited Hybrid vehicle and shifting control method and power transmission system thereof
US9568066B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Power transmission system and vehicle comprising the same
US9568065B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US9874266B2 (en) 2014-09-10 2018-01-23 Byd Company Limited Power transmission system and vehicle comprising the same
DE102010008786B4 (de) 2009-03-06 2019-02-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Elektrisch variables Multimodus-Hybridgetriebe und Verfahren zum Ausführen eines quasiasynchronen Schaltens in einem Hybridgetriebe
EP3501928A1 (de) * 2017-12-20 2019-06-26 Magna PT B.V. & Co. KG Verfahren zum betreiben eines hybrid-antriebsstranges sowie hybrid-antriebsstrang für ein kraftfahrzeug
EP3771582A1 (de) * 2019-07-31 2021-02-03 Magna PT B.V. & Co. KG Verfahren zum betreiben eines hybridisierten doppelkupplungsgetriebes
DE102019214633A1 (de) * 2019-09-25 2021-03-25 Zf Friedrichshafen Ag Getriebeanordnung für ein Kraftfahrzeug
DE102020201103A1 (de) 2020-01-30 2021-08-05 Magna Pt B.V. & Co. Kg Verfahren zum Betreiben eines hybridisierten Doppelkupplungsgetriebe-Antriebsstranges
EP3868587A4 (de) * 2018-10-26 2021-12-01 BYD Company Limited Hybridantriebssystem und fahrzeug

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972481A1 (de) * 2007-03-20 2008-09-24 FEV Motorentechnik GmbH Verfahren zum Betrieb eines Hybridantriebssystems sowie Hybridsantriebssystem mit zwei Teilgetrieben
KR100837541B1 (ko) * 2007-05-17 2008-06-12 엘에스전선 주식회사 트랙터의 변속장치
WO2009056042A1 (en) * 2007-10-22 2009-05-07 Byd Company Limited Hybrid power driving system and driving method thereof
JP4942212B2 (ja) * 2008-04-21 2012-05-30 アイシン・エーアイ株式会社 ハイブリッド動力装置
DE102008040692A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
CN101424328B (zh) * 2008-12-19 2011-09-14 重庆青山工业有限责任公司 双离合器自动变速器
CN101830221B (zh) * 2010-04-15 2013-02-27 大连理工大学 混合动力车用电机零转矩控制双同步换挡方法
DE102010028079B4 (de) * 2010-04-22 2023-03-23 FEV Europe GmbH Hybridantriebssystem
DE102010030573A1 (de) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Hybridantrieb mit einem automatisierten Schaltgetriebe
JP5136660B2 (ja) * 2010-07-08 2013-02-06 株式会社デンソー 車両用動力伝達装置
US8618752B2 (en) 2010-07-21 2013-12-31 Superior Electron, Llc System, architecture, and method for minimizing power consumption and increasing performance in electric vehicles
DE102010061823B4 (de) * 2010-11-24 2020-02-13 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102011003080A1 (de) * 2011-01-19 2012-07-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebsvorrichtung
US8469858B2 (en) * 2011-05-10 2013-06-25 GM Global Technology Operations LLC Hybrid vehicle with dual clutch transmission
DE102011105521B4 (de) * 2011-06-22 2016-06-23 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang und Gangstufenwechselverfahren
US8690728B2 (en) * 2011-11-01 2014-04-08 Ford Global Technologies, Llc Controlled vehicle launch using a stepped ratio transmission
DE102013000838A1 (de) * 2013-01-21 2014-07-24 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Verfahren zum Halten eines Kraftfahrzeuges an einer Steigung
DE102013005252A1 (de) * 2013-03-27 2014-10-02 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hybrid-Antriebsstrang und Verfahren zum Steuern desselben
EP3100886B1 (de) 2014-01-30 2022-06-01 BYD Company Limited Fahrzeug und kraftübertragungssystem dafür
US9944165B2 (en) 2014-01-30 2018-04-17 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
CN104279311B (zh) 2014-01-30 2015-11-25 比亚迪股份有限公司 车辆中同步器的控制方法及车辆
WO2015113416A1 (en) 2014-01-30 2015-08-06 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US10670123B2 (en) 2014-01-30 2020-06-02 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
WO2015113411A1 (en) 2014-01-30 2015-08-06 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
CN104276031B (zh) 2014-01-30 2016-01-13 比亚迪股份有限公司 车辆及其驱动控制方法
WO2015113414A1 (en) 2014-01-30 2015-08-06 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
KR101551123B1 (ko) * 2014-09-29 2015-09-07 현대자동차주식회사 하이브리드 차량용 파워트레인
DE102014220066A1 (de) * 2014-10-02 2016-06-09 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zum Betreiben eines Antriebsstrangs
CN104608769B (zh) * 2014-10-20 2016-04-13 比亚迪股份有限公司 电动汽车的换挡控制方法和基于换挡的电机转速调节方法
CN105667491B (zh) * 2014-11-18 2019-07-16 上海汽车集团股份有限公司 用于混合动力车辆变速器的控制系统和方法
KR101655580B1 (ko) * 2014-11-26 2016-09-07 현대자동차주식회사 하이브리드 차량용 구동장치
CN104773064B (zh) * 2015-01-16 2016-04-13 比亚迪股份有限公司 变速器、动力传动系统和车辆
DE102015217286A1 (de) * 2015-09-10 2017-03-16 Bayerische Motoren Werke Aktiengesellschaft Antriebsvorrichtung für ein hybridgetriebenes Kraftfahrzeug
EP3733437B1 (de) * 2019-05-03 2022-10-12 Ningbo Geely Automobile Research & Development Co. Ltd. Getriebe, einzelkupplungsantriebsstrangsystem und verfahren zum betreiben eines einzelkupplungsantriebsstrangsystems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308697A1 (de) * 2002-03-07 2003-09-25 Luk Lamellen & Kupplungsbau Doppelkupplungsgetriebe und Verfahren zum Durchführen einer Schaltung bei einem Doppelkupplungsgetriebe
DE10305639A1 (de) * 2002-02-12 2004-03-25 Aisin Seiki K.K., Kariya Getriebeanordnung mit einer Antriebsquelle
US20050139035A1 (en) * 2003-12-24 2005-06-30 Hee Ra Lee Double clutch transmission for a hybrid electric vehicle and method for operating the same
EP1559603A1 (de) * 2004-01-27 2005-08-03 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zum Hochschalten eines Parallelschaltgetriebes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US684794A (en) * 1899-02-11 1901-10-22 Frank Fuller Acetylene-gas generator.
US5794207A (en) * 1996-09-04 1998-08-11 Walker Asset Management Limited Partnership Method and apparatus for a cryptographically assisted commercial network system designed to facilitate buyer-driven conditional purchase offers
US6009413A (en) * 1994-11-10 1999-12-28 America Online, Inc. System for real time shopping
JPH10214284A (ja) * 1997-01-30 1998-08-11 Victor Co Of Japan Ltd オンラインショッピングシステム及びそのサーバー
US6058379A (en) * 1997-07-11 2000-05-02 Auction Source, L.L.C. Real-time network exchange with seller specified exchange parameters and interactive seller participation
JP2003529477A (ja) * 1998-10-02 2003-10-07 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 自動車
US7171386B1 (en) * 1999-10-08 2007-01-30 Rfv Holdings Real-time commodity trading method and apparatus
US7370006B2 (en) * 1999-10-27 2008-05-06 Ebay, Inc. Method and apparatus for listing goods for sale
US7373317B1 (en) * 1999-10-27 2008-05-13 Ebay, Inc. Method and apparatus for facilitating sales of goods by independent parties
US20010034697A1 (en) * 2000-04-25 2001-10-25 Hooshang Kaen Integrated auction system
US20010056395A1 (en) * 2000-06-09 2001-12-27 Khan Saadat H. Internet bargaining system
US6901379B1 (en) * 2000-07-07 2005-05-31 4-D Networks, Inc. Online shopping with virtual modeling and peer review
ES2245730T3 (es) * 2001-03-27 2006-01-16 Lego A/S Procedimiento, sistema y medio de almacenamiento para una herramienta de comunicacion de lenguaje iconico.
US20020178087A1 (en) * 2001-05-25 2002-11-28 Henderson Greg S. Internet-based instant messaging hybrid peer-to-peer distributed electronic commerce system and method
WO2003006841A2 (de) * 2001-07-12 2003-01-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum adaptieren der einstellung einer kupplung in einem unkonventionellen antriebsstrang eines fahrzeugs
DE50306034D1 (de) * 2002-03-07 2007-02-01 Luk Lamellen & Kupplungsbau Doppelkupplungsgetriebe und verfahren zum steuern von wenigstens zwei kupplungen bei doppelkupplungsgetriebe eines fahrzeuges
US20040117294A1 (en) * 2002-07-10 2004-06-17 Plantfind.Com, Inc. System and methods for facilitating commerce in component-based industries
US7440912B2 (en) * 2003-03-31 2008-10-21 Bgc Partners, Inc. Systems and methods for automated internet-based auctions
JP3952005B2 (ja) * 2003-11-18 2007-08-01 日産自動車株式会社 ハイブリッド車両の駆動装置
US7885901B2 (en) * 2004-01-29 2011-02-08 Yahoo! Inc. Method and system for seeding online social network contacts
JP2006064644A (ja) * 2004-08-30 2006-03-09 Tdk Corp パルス波レーダー装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305639A1 (de) * 2002-02-12 2004-03-25 Aisin Seiki K.K., Kariya Getriebeanordnung mit einer Antriebsquelle
DE10308697A1 (de) * 2002-03-07 2003-09-25 Luk Lamellen & Kupplungsbau Doppelkupplungsgetriebe und Verfahren zum Durchführen einer Schaltung bei einem Doppelkupplungsgetriebe
US20050139035A1 (en) * 2003-12-24 2005-06-30 Hee Ra Lee Double clutch transmission for a hybrid electric vehicle and method for operating the same
EP1559603A1 (de) * 2004-01-27 2005-08-03 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zum Hochschalten eines Parallelschaltgetriebes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
""7.LuK Kolloquium 11./12.April 2002"", April 2002, LUK GMBH & CO., pages: 252 - 254

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010008786B4 (de) 2009-03-06 2019-02-07 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Elektrisch variables Multimodus-Hybridgetriebe und Verfahren zum Ausführen eines quasiasynchronen Schaltens in einem Hybridgetriebe
EP2481956A1 (de) * 2009-09-24 2012-08-01 Aisin Seiki Kabushiki Kaisha Schiebevorrichtung für ein fahrzeug
EP2481956A4 (de) * 2009-09-24 2013-02-27 Aisin Seiki Schiebevorrichtung für ein fahrzeug
CN103978976A (zh) * 2013-02-12 2014-08-13 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于操作混合动力双离合器变速器传动系统的方法
EP2765338A3 (de) * 2013-02-12 2016-11-30 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Verfahren zum Betreiben eines hybridisierten Doppelkupplungsgetriebe-Antriebsstranges
CN103978976B (zh) * 2013-02-12 2017-08-01 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于操作混合动力双离合器变速器传动系统的方法
CN103223860A (zh) * 2013-04-18 2013-07-31 吉林大学 针对家用轿车的插电式混合动力驱动装置
CN103223860B (zh) * 2013-04-18 2015-11-25 吉林大学 针对家用轿车的插电式混合动力驱动装置
WO2015113422A1 (zh) * 2014-01-30 2015-08-06 比亚迪股份有限公司 车辆及其动力传动系统
DE102014203243A1 (de) * 2014-02-24 2015-08-27 Zf Friedrichshafen Ag Anordnung aus einem Getriebe und einer elektrischen Maschine für einen Hybridantrieb und Hybridantrieb
US9568065B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US9568066B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Power transmission system and vehicle comprising the same
US9874266B2 (en) 2014-09-10 2018-01-23 Byd Company Limited Power transmission system and vehicle comprising the same
US9421966B2 (en) 2014-10-20 2016-08-23 Byd Company Limited Hybrid vehicle and shifting control method and power transmission system thereof
EP3501928A1 (de) * 2017-12-20 2019-06-26 Magna PT B.V. & Co. KG Verfahren zum betreiben eines hybrid-antriebsstranges sowie hybrid-antriebsstrang für ein kraftfahrzeug
CN110001624A (zh) * 2017-12-20 2019-07-12 麦格纳Pt有限两合公司 用于运行混合动力传动系的方法和用于机动车的混合动力传动系
CN110001624B (zh) * 2017-12-20 2022-02-11 麦格纳Pt有限两合公司 用于运行混合动力传动系的方法和用于机动车的混合动力传动系
EP3868587A4 (de) * 2018-10-26 2021-12-01 BYD Company Limited Hybridantriebssystem und fahrzeug
US11685250B2 (en) 2018-10-26 2023-06-27 Byd Company Limited Hybrid power-driven system and vehicle
EP3771582A1 (de) * 2019-07-31 2021-02-03 Magna PT B.V. & Co. KG Verfahren zum betreiben eines hybridisierten doppelkupplungsgetriebes
DE102019214633A1 (de) * 2019-09-25 2021-03-25 Zf Friedrichshafen Ag Getriebeanordnung für ein Kraftfahrzeug
DE102020201103A1 (de) 2020-01-30 2021-08-05 Magna Pt B.V. & Co. Kg Verfahren zum Betreiben eines hybridisierten Doppelkupplungsgetriebe-Antriebsstranges

Also Published As

Publication number Publication date
US7625311B2 (en) 2009-12-01
DE112007001971A5 (de) 2009-05-28
CN101516708B (zh) 2012-07-04
CN101516708A (zh) 2009-08-26
US20090176617A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2008031389A1 (de) Verfahren zum betreiben eines hybridantriebsstrangs für ein kraftfahrzeug
DE102011089467B4 (de) Hybridantrieb eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
EP1559603B1 (de) Verfahren zum Hochschalten eines Parallelschaltgetriebes
EP2190709B1 (de) Verfahren zum betreiben eines antriebsstrangs
EP2193060B1 (de) Verfahren zum betreiben eines antriebsstrangs
EP3668737B1 (de) Hybridantriebsgetriebeeinheit sowie verfahren zum betreiben eines fahrzeugs mit hybridantrieb
DE102006054405B4 (de) Elektrodynamisches Anfahrelement und Verfahren zum Regeln eines elektrodynamischen Anfahrelements
WO1999050572A1 (de) Antriebsstrang für ein kraftfahrzeug
WO2007131838A1 (de) Verfahren zum starten einer verbrennungskraftmaschine in einem hybridantrieb
DE102006003725A1 (de) Verfahren zur Steuerung eines Kraftfahrzeug-Antriebsstrangs
DE102008000046A1 (de) Verfahren zum Betreiben eines Antriebsstrangs
DE102007052737A1 (de) Verbrennungsmotor-Schleppstart eines Hybrid-Antriebstranges sowie Hybrid-Antriebsstrang
DE102012218121A1 (de) Hybridantrieb eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
EP3501870B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102010044508B4 (de) Verfahren zur Steuerung eines Doppelkupplungsgetriebes
EP4188765A1 (de) Verfahren zum starten eines verbrennungsmotors in einem antriebsstrang mit hybridisiertem doppelkupplungsgetriebe
DE102020113089A1 (de) Antriebseinheit für ein Hybridkraftfahrzeug mit Schaltgetriebe; sowie Verfahren zum Umschalten zwischen zwei Gängen
WO2020114544A1 (de) Verfahren zur bestimmung eines tastpunktes einer hybridtrennkupplung eines hybrid-fahrzeuges
WO2007128260A1 (de) Verfahren zum betreiben eines kraftfahrzeugantriebsstrangs
EP3771583B1 (de) Verfahren zum starten eines verbrennungsmotors in einem antriebsstrang mit hybridisiertem doppelkupplungsgetriebe
DE102017220072A1 (de) Verfahren beim Betrieb eines Hybridfahrzeugs
WO2018019450A1 (de) Synchronpunkt-ermittlungsverfahren und kraftfahrzeuggetriebe
DE102020210728B3 (de) Verfahren zum Steuern eines Hybridantriebsstrangs eines Hybridkraftfahrzeugs
DE102004057122A1 (de) Verfahren zum Erkennen der Drehrichtung der Sekundärseite einer Anfahrkupplung
WO2019223998A1 (de) Antriebsstrang für ein kraftfahrzeug und verfahren zum betreiben desselben

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034322.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070019719

Country of ref document: DE

REF Corresponds to

Ref document number: 112007001971

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07785708

Country of ref document: EP

Kind code of ref document: A1