US20060275359A1 - Palliative effects of morinda citrifolia oil and juice - Google Patents

Palliative effects of morinda citrifolia oil and juice Download PDF

Info

Publication number
US20060275359A1
US20060275359A1 US11/376,066 US37606606A US2006275359A1 US 20060275359 A1 US20060275359 A1 US 20060275359A1 US 37606606 A US37606606 A US 37606606A US 2006275359 A1 US2006275359 A1 US 2006275359A1
Authority
US
United States
Prior art keywords
cox
morinda citrifolia
juice
cancer
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/376,066
Inventor
Claude Jensen
Jonathan Fritz
Chen Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/376,066 priority Critical patent/US20060275359A1/en
Publication of US20060275359A1 publication Critical patent/US20060275359A1/en
Priority to US11/620,914 priority patent/US20070218153A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/74Rubiaceae (Madder family)
    • A61K36/746Morinda
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • This invention relates to a method and composition for preventing and treating diseases, and more particularly, to a method and composition that uses the selective Cox-2 inhibition characteristic of processed Morinda citrifolia to prevent and treat diseases.
  • Non-selective drugs such as NSAIDs are traditionally used in treating joint pain, muscle pain, and joint swelling.
  • NSAIDs include ibuprofen, (e.g., Advil®, Motrin®, Nuprin®), naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin.
  • ibuprofen e.g., Advil®, Motrin®, Nuprin®
  • naproxen sulindac
  • diclofenac diclofenac
  • piroxicam ketoprofen
  • ketoprofen diflunisal
  • nabumetone etodolac
  • oxaprozin oxaprozin
  • indomethacin indomethacin
  • Cox-1 and Cox-2 both catalyze the first two steps in the biosynthesis from arachidonic acid to the prostaglandins. The difference is that Cox-1 is constitutive and Cox-2 appears inducible. Cox-1 presents in nearly all parts of the body at a constant level to produce the prostaglandins to line the stomach, maintain normal renal function, prevent platelet aggregation.
  • Cox-2 is normally absent from the body and induced at infected sites by those factors associated with inflammation such as bacterial polysaccharie and cytokins, interleukin-1, -2 and tumor necrosis factor. Once induced, Cox-2 produces large amounts of prostaglandins, which in turn, lowers the pain threshold, raises the set point of the temperature-regulating center, and causes peripheral vasodilatation with local redness and edema formation. Accordingly, researchers found that selectively inhibiting Cox-2, while avoiding proportional inhibition of Cox-1, not only reduced pain and inflammation, but also allowed the gastrointestinal lining to retain integrity. Cox-2 selective inhibitors are, therefore, great alleviating tools for chronic pain sufferers, such as arthritis sufferers, because Cox-2 selective inhibition drugs can be taken long-term without causing the detrimental effects associated with long-term use of NSAIDs.
  • Cox-2 plays an important role in cell proliferation, and accordingly, in cancer cell growth and prevention thereof.
  • Recent research shows that at the organismal level, Cox-2 is induced physiologically during the mitogenic process of wound healing. This is significant because Cox-2 has been found to be over-expressed in many types of pre-malignant and malignant neoplasms in humans and other organisms. That is, Cox-2 over-expression occurs when Cox-2 becomes elevated early in tumor progression.
  • Cox-2 inhibitors may play a role in preventing, delaying, or at least slowing the progress of such diseases.
  • Cox-2 examples include Celecoxib, known as “Celebrex®”, and Rofecoxib, known as “Vioxx®.” These pharmaceutical products are commonly prescribed for arthritis and other chronic pain sufferers. Unfortunately, there are many disadvantages to “Celebrex®” and “Vioxx®.” For instance, these products are only available through prescription. Moreover, they are expensive and not yet approved for pediatric use or use by a pregnant woman during certain periods of fetal development. In fact, even though selective Cox-2 inhibition drugs have been reported to be a “success,” there are doubts about manufacturers' claims that selective Cox-2 inhibition drugs are “safer” than non-selective Cox inhibitors.
  • Some embodiments of the present invention provide a formulation and method for treating or preventing diseases via Cox-2 selective inhibition.
  • diseases may include various cancers, Alzheimer's and other neuro-degenerative diseases, or a medley of other inflammation-based diseases.
  • Some embodiments of the present invention provide a method of treating various diseases and ailments, which comprise administering to a mammal a therapeutically effective amount of processed Morinda citrifolia.
  • Morinda citrifolia is generally administered in the form of a juice, oil, capsule or as an ingredient in another food product.
  • An advantage of using processed Morinda citrifolia is that treatment may be carried out without causing adverse gastric side effects that can occur by using NSAIDs for prolonged periods.
  • the formulation comprises processed Morinda citrifolia juice, which has been discovered to have selective Cox-2 inhibitor characteristics.
  • the precise mechanism by which processed Morinda citrifolia selectively inhibits Cox-2 is not known.
  • a preferred method of the present invention comprises the consumption of processed Morinda citrifolia in therapeutic amounts.
  • the Indian Mulberry plant known scientifically as Morinda Citrofolia L ., is a shrub, or a small or medium sized tree three to ten meters high. It grows in tropical coastal regions around the world. The plant grows in the wild, and it has been cultivated in plantations and small individual growing plots.
  • the Indian mulberry plant has somewhat rounded branches and evergreen, opposite (or spuriously alternate), dark, glossy, wavy, prominently-veined leaves.
  • the leaves are broadly elliptic to oblong, pointed at both ends, ten to thirty centimeters in length and five to fifteen centimeters wide.
  • the Indian mulberry flowers are small, white, three to five-lobed, tubular, fragrant, and about one and one-quarter centimeters long.
  • the flowers develop into compound fruits composed of many small drupes fused into an ovoid, ellipsoid or roundish, lumpy body, five to ten centimeters long, five to seven centimeters thick, with waxy, white or greenish-white or yellowish, semi-translucent skin.
  • the fruit contains “eyes” on its surface, similar to a potato.
  • the fruit is juicy, bitter, dull-yellow or yellowish-white, and contains numerous red-brown, hard oblong-triangular, winged, two-celled stones, each containing about four seeds.
  • Processed Morinda citrifolia juice can be prepared by separating seeds and peels from the juice and pulp of a ripened Morinda citrifolia fruit; filtering the pulp from the juice; and packaging the juice.
  • the juice can be immediately included as an ingredient in another food product, frozen or pasteurized.
  • the juice and pulp can be pureed into a homogenous blend to be mixed with other ingredients.
  • Other processes include freeze drying the fruit and juice. The fruit and juice can be reconstituted during production of the final juice product. Still other processes include air drying the fruit and juices, prior to being masticated.
  • the fruit is either hand picked or picked by mechanical equipment.
  • the fruit can be harvested when it is at least one inch (two to three centimeters) and up to twelve inches (twenty-four to thirty-six centimeters) in diameter.
  • the fruit preferably has a color ranging from a dark-green through a yellow-green up to a white color, and gradations of color in between. The fruit is thoroughly cleaned after harvesting and before any processing occurs.
  • the fruit is allowed to ripen or age from zero to fourteen days, with most fruit being held from two to three days.
  • the fruit is ripened or aged by being placed on equipment so it does not contact the ground. It is preferably covered with a cloth or netting material during aging, but can be aged without being covered.
  • the fruit is light in color, from a light green, light yellow, white or translucent color.
  • the fruit is inspected for spoilage or for excessively green color and firmness. Spoiled and hard green fruit is separated from the acceptable fruit.
  • the ripened and aged fruit is preferably placed in plastic lined containers for further processing and transport.
  • the containers of aged fruit can be held from zero to thirty days. Most fruit containers are held for seven to fourteen days before processing.
  • the containers can optionally be stored under refrigerated conditions prior to further processing.
  • the fruit is sunpacked from the storage containers and is processed through a manual or mechanical separator.
  • the seeds and peel are separate from the juice and pulp.
  • the juice can be filtered from the pulp.
  • the juice can be packaged into containers for storage and transport. Alternatively, the juice can be immediately processed into finished juice product.
  • the containers can be stored in refrigerated, frozen, or room temperature conditions.
  • the pulp can be blended in with the juice to make a puree.
  • the Morinda citrifolia juice and puree can then be blended in a homogenous blend and mixed with other ingredients.
  • the other ingredients consist of, but are not limited to water, fruit juice concentrates, flavorings, sweeteners, nutritional ingredients, botanicals, and colorings.
  • the finished juice product is preferably heated and pasteurized at a minimum temperature of 181° F. (83° C.) or higher up to 212° F. (100° C.).
  • the product is filled and sealed into a final container of plastic, glass, or another suitable material that can withstand the processing temperatures.
  • the containers are maintained at the filling temperature or may be cooled rapidly and then placed in a shipping container.
  • the shipping containers are preferably wrapped with a material and in a manner to maintain or control the temperature of the product in the final containers.
  • Pure juice can be processed by separating the pulp from the juice through filtering equipment.
  • the filtering equipment preferably consists of, but is not limited to, a centrifuge decanter, a screen filter with a size from one micron up to 2000 microns, more preferably less than 500 microns, a filter press, reverse osmosis filtration, or any other standard commercial filtration devices.
  • the operating filter presser preferably ranges from 0.1 psig up to about 1000 psig.
  • the flow rate preferably ranges from 0.1 gpm up to 1000 gpm, and more preferably between five and fifty gpm.
  • Some embodiments of the present invention encompass a method of treating and preventing various diseases and ailments in a human, which comprises administering to a mammal an effective amount of processed Morinda citrifolia.
  • the invention anticipates using the selective inhibition of Cox-2 property of processed Morinda citrifolia for the treatment and prevention of a variety of cancers, Alzheimer's, and a medley of other inflammation-induced diseases.
  • the processed Morinda citrifolia may be modified to increase the benefits for particular diseases and ailments. Oral administration is a preferred mode of administration.
  • the invention encompasses pharmaceutical compositions in combination with processed Morinda citrifolia for inhibiting the production of the prostaglandins by Cox-2 and treating or preventing the above-mentioned diseases and ailments comprising a pharmaceutically acceptable carrier, and a therapeutically effective amount of processed Morinda citrifolia described above. These could take the form of a tablet or capsule, solutions, or be included as an ingredient in another food product.
  • the compound may be useful for the prevention of cancers such as cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas; and well-differentiated hepatocellular carcinomas; as well as prevention of neuro-degenerative diseases, such as Alzheimer's, or any other inflammation-induced disease such as, heart disease, osteoporosis, diabetes and the like.
  • cancers such as cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas; and well-differentiated hepatocellular carcinomas
  • neuro-degenerative diseases such as Alzheimer's, or any other inflammation-induced disease such as, heart disease, osteoporosis, diabetes and the like.
  • Morinda citrifolia compounds thereof function in a manner similar to other selective Cox-2 inhibitors and are thereby useful in the treatment of a variety of prostaglandin-mediated or inflammation-induced diseases. This possibility is illustrated by Morinda citrifolia 's ability to selectively inhibit Cox-2.
  • compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, or lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, syrups or elixirs.
  • Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents.
  • Tablets contain the active ingredient in admixture with non-toxic pharmaceutically excipients, which are suitable for the manufacture of tablets.
  • Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • treatment or prevention may be carried out without causing gastric side effects of the type that can occur when NSAIDs are consumed for prolonged periods.
  • treatment or prevention may be carried out inexpensively, with less risk of heart failure than other Cox-2 inhibitors, by women during gestation, and by people of all ages.
  • some embodiments of this invention provide a method of treating or preventing a variety of diseases, such as cancer of the colon, esophagus, skin, lungs, bladder, stomach, breast, head and neck, prostate, pancreas, and well-differentiated hepatocellular carcinomas, Alzheimer's disease and other degenerative and neuro-degenerative diseases, while inhibiting to a lesser extent Cox-1, which keeps the normal functions of the body.
  • diseases such as cancer of the colon, esophagus, skin, lungs, bladder, stomach, breast, head and neck, prostate, pancreas, and well-differentiated hepatocellular carcinomas, Alzheimer's disease and other degenerative and neuro-degenerative diseases, while inhibiting to a lesser extent Cox-1, which keeps the normal functions of the body.
  • the oral dosage will be administered from two to three times per day.
  • Morinda citrifolia juice was tested for Cox-1 and Cox-2 inhibition.
  • Enzyme assays were conducted on Cox-1 and Cox-2.
  • the source of the Cox-1 enzymes was human platelet.
  • the substrate was fifty-million cell arachidonic acid in a one-percent DMSO vehicle.
  • Pre-incubation time for the Cox-1 immuno assay was fifteen minutes at 37° C.; the incubation time and temperature were also fifteen minutes at 37° C.
  • An incubation buffer was HBSS buffer with fifteen mMHEPS, at a pH of 7.4.
  • EIA quantitation of the prostaglandin E2 was performed. A significance criteria of greater or equal to fifty-percent of maximum stimulation or inhibition was employed.
  • the source of the Cox-2 was human recombinant Sf9 insect cells and the substrate was 0.2 ⁇ m of arachidonic acid.
  • the vehicle was a one-percent DMSO.
  • Pre-incubation time and temperature was fifteen minutes at 37° C.
  • Incubation time and temperature were five minutes at 37° C.
  • the incubation buffer was 100 mM Tris-HCl, 1 mM glutathione, 1 uM hematin, and 500 uM of phenol at a pH of 7.7.
  • EIA quantitation of the prostaglandin E2 was performed. The significance criteria of greater than or equal to fifty-percent of the maximum stimulation or inhibition was employed.
  • the biochemical assay results show that at a concentration of 2.31 percent, inhibition of the Cox-l enzyme is four times less than the inhibition of the Cox-2 enzyme. Alternatively, this demonstrates Cox-2 is inhibited to four times the extent as Cox-1. Specifically, the results showed that inhibition of Cox-1 was twenty-percent while inhibition of the Cox-2 was almost sixty-percent. Where the concentration was increased to ten-percent, the inhibition of Cox-1 is shown to be approximately 83 percent and the inhibition of Cox-2 is approximately 84 percent. Thus, at greater concentrations, the ratio and selectivity of Cox-2 to Cox-1 seems to be limited.
  • a person receives a wound that either causes internal inflammation or leaves a neoplasm, or, he or she experiences some other internal biochemical reaction where Cox-2 is over-expressed. Since Cox-2 expression has been implicated in tumor promotion 1 , he or she may delay, if not prevent altogether, tumor progression by consuming a predetermined amount of food product containing processed Morinda citrifolia. 1 According to Dr. Raymond N. DuBois of Vanderbilt University Medical Center in Nashville, Tenn., and colleagues.
  • a patient experiences the type of inflammation in the brain that leads to Alzheimer's.
  • the individual desires to slow the progression of Alzheimer's by using a nonprescription, over-the-counter preparation.
  • the individual consumes a predetermined amount of food product containing processed Morinda citrifolia .
  • the person intermittently consumes the food product containing the processed Morinda citrifolia until the disease's progress is slowed.
  • a person is suffering from cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas, as well as well-differentiated hepatocellular carcinomas.
  • the person consumes a prescribed amount of food product containing processed Morinda citrifolia .
  • the person intermittently consumes the food product containing processed Morinda citrifolia until the cancer symptoms lessen or are treated altogether.
  • a person is at increased risk of developing cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas; as well as well-differentiated hepatocellular carcinomas.
  • the person consumes a prescribed amount of food product containing processed Morinda citrifolia .
  • the person intermittently consumes the food product containing processed Morinda citrifolia until the cancers are sufficiently prevented or at least, hindered from progression.
  • a person suffers from a debilitating disease instigated by underlying inflammation.
  • this person intermittently consumes process Morinda citrifolia juice in therapeutic doses.

Abstract

A method of preventing and treating various ailments and diseases by utilizing the Cox-2 selective inhibition characteristics of processed Morinda citrifolia.

Description

    BACKGROUND
  • 1. Related Applications
  • This application claims priority to U.S. application Ser. No. 10/124,627 filed Apr. 17, 2002, entitled “Palliative Effects of Morinda Citrifolia Oil and Juice”.
  • 2. Field of the Invention
  • This invention relates to a method and composition for preventing and treating diseases, and more particularly, to a method and composition that uses the selective Cox-2 inhibition characteristic of processed Morinda citrifolia to prevent and treat diseases.
  • 3. Background
  • People are becoming increasingly more conscientious of their long-term health. With a variety of deadly diseases and ailments threatening public health each year, efforts are ongoing to find treatments and medications that treat and prevent disease. In fact, with statistics such as those provided by the American Cancer Society suggesting that as many as 1,268,000 new cancer cases were diagnosed in 2001, there is a heightened awareness in physical wellness and in avoiding terminal debility. Moreover, cancer in particular, is a significant threat because it is the second leading cause of death in the United States. Nevertheless, other diseases such as Alzheimer's, and other degenerative diseases, continue to destroy lives, and ultimately, cause suffering for families.
  • In recent years, it has been discovered that the ability to selectively inhibit one isoform of the Cyclooxygenase enzyme, which is a naturally occurring enzyme found in humans, may have the effect of treating and preventing a variety of diseases. In order to understand how selective inhibition of the Cyclooxygenase enzyme prevents and treats diseases, it is first necessary to understand the background and inadequacies of ‘non-selective ’ drugs, namely nonsteroidal anti-inflammatory drugs, (NSAIDs), and how such inadequacies motivated the use of selective Cox-2 inhibition drugs to prevent and treat diseases.
  • Non-selective drugs, such as NSAIDs are traditionally used in treating joint pain, muscle pain, and joint swelling. Examples of NSAIDs include ibuprofen, (e.g., Advil®, Motrin®, Nuprin®), naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin. Unfortunately, while NSAIDs ate effective in reducing inflammation and pain associated with inflammation, they produce a number of adverse side effects. The major side effects relate to the gastrointestinal tract. For example, between ten and fifty-percent of patients being treated with NSAIDs suffer side effects such as diarrhea, heartburn, increased abdominal pain, and upset stomach. A significant percentage of these patients also develop ulcers in the stomach and the upper-gastrointestinal tract, which can lead to internal bleeding and other complications.
  • The significant numbers of patients taking NSAIDs, and thereby, suffering an increased risk of ulceration in the stomach, motivated an investigation of the mechanisms by which NSAIDs inhibit and prevent inflammation. The findings of this research then led to the discovery that some inflammation-alleviating drugs, specifically Cox-2 selective inhibitors, can actually be used for more than just pain and inflammation alleviation; they can be used to treat and prevent disease. Specifically, researchers found that inflammation in human tissues is related to the conversion of arachidonic acid (a molecule present in the majority of human body cells) into a prostaglandin in the cells of the tissue. The conversion of arachidonic acid to a prostaglandin requires the presence of the enzyme Cyclooxygenase (hereinafter “Cox”). Thus, Cox is the enzyme that produces pain and inflammation. Consequently, NSAIDs, which inhibit Cox, suppress pain. However, in the early 1990's two isoforms of Cox were discovered: Cox-1 and Cox-2. Cox-1 and Cox-2 both catalyze the first two steps in the biosynthesis from arachidonic acid to the prostaglandins. The difference is that Cox-1 is constitutive and Cox-2 appears inducible. Cox-1 presents in nearly all parts of the body at a constant level to produce the prostaglandins to line the stomach, maintain normal renal function, prevent platelet aggregation. On the other hand, Cox-2 is normally absent from the body and induced at infected sites by those factors associated with inflammation such as bacterial polysaccharie and cytokins, interleukin-1, -2 and tumor necrosis factor. Once induced, Cox-2 produces large amounts of prostaglandins, which in turn, lowers the pain threshold, raises the set point of the temperature-regulating center, and causes peripheral vasodilatation with local redness and edema formation. Accordingly, researchers found that selectively inhibiting Cox-2, while avoiding proportional inhibition of Cox-1, not only reduced pain and inflammation, but also allowed the gastrointestinal lining to retain integrity. Cox-2 selective inhibitors are, therefore, great alleviating tools for chronic pain sufferers, such as arthritis sufferers, because Cox-2 selective inhibition drugs can be taken long-term without causing the detrimental effects associated with long-term use of NSAIDs.
  • Understanding the mechanisms behind Cox-2 selective inhibition drugs has understandably led to numerous breakthroughs in the medical industry. For instance, in addition to its role in inflammation, multiple pieces of evidence suggest that Cox-2 plays an important role in cell proliferation, and accordingly, in cancer cell growth and prevention thereof. Recent research shows that at the organismal level, Cox-2 is induced physiologically during the mitogenic process of wound healing. This is significant because Cox-2 has been found to be over-expressed in many types of pre-malignant and malignant neoplasms in humans and other organisms. That is, Cox-2 over-expression occurs when Cox-2 becomes elevated early in tumor progression. Consequently, inhibition of such Cox-2 over-expression may prevent and treat cancers of the colon, esophagus, skin, lungs, bladder, stomach, breast, head and neck, prostate, pancreas, and well-differentiated hepatocellular carcinomas, where Cox-2 has thus far been found to be over-expressed in the majority of tumors in humans.
  • In addition, since inflammation may underlie many other chronic and debilitating diseases, such as Alzheimer's, heart disease, osteoporosis and diabetes, one can conclude that Cox-2 inhibitors may play a role in preventing, delaying, or at least slowing the progress of such diseases.
  • Examples of current products that selectively inhibit Cox-2 are Celecoxib, known as “Celebrex®“, and Rofecoxib, known as “Vioxx®.” These pharmaceutical products are commonly prescribed for arthritis and other chronic pain sufferers. Unfortunately, there are many disadvantages to “Celebrex®” and “Vioxx®.” For instance, these products are only available through prescription. Moreover, they are expensive and not yet approved for pediatric use or use by a pregnant woman during certain periods of fetal development. In fact, even though selective Cox-2 inhibition drugs have been reported to be a “success,” there are doubts about manufacturers' claims that selective Cox-2 inhibition drugs are “safer” than non-selective Cox inhibitors. Some side effects associated with non-selective Cox inhibitors are also found with selective Cox-2 inhibition drugs. More importantly, people using selective Cox-2 inhibition drugs have been shown to have four times the risk of suffering a heart attack than those taking traditional, non-selective NSAIDs. Further, there is always the risk that Cox-2 inhibition drugs will negatively interact with other drugs.
  • Thus, it would be advantageous to provide a method and composition that results in selective Cox-2 inhibition and makes possible the prevention and treatment for a variety of diseases, such as various cancers, Alzheimer's, neuro-degenerative diseases generally, and a medley of other diseases. Moreover, it would also be advantageous to provide a Cox-2 inhibition composition and method that not only reduces adverse gastrointestinal side effects, but also goes further and minimizes, if not extinguishes altogether, the risk of heart attacks in Cox-2 inhibition drug users. Finally, it would be further advantageous to provide a Cox-2 inhibition drug, which unlike selective Cox-2 inhibition drugs of the prior art, is not expensive, is available over-the-counter, can be used by people of all ages, and can be used by pregnant during the entire gestational period.
  • SUMMARY AND OBJECTS OF THE INVENTION
  • Some embodiments of the present invention provide a formulation and method for treating or preventing diseases via Cox-2 selective inhibition. Such diseases may include various cancers, Alzheimer's and other neuro-degenerative diseases, or a medley of other inflammation-based diseases.
  • Some embodiments of the present invention provide a method of treating various diseases and ailments, which comprise administering to a mammal a therapeutically effective amount of processed Morinda citrifolia. Morinda citrifolia is generally administered in the form of a juice, oil, capsule or as an ingredient in another food product. An advantage of using processed Morinda citrifolia is that treatment may be carried out without causing adverse gastric side effects that can occur by using NSAIDs for prolonged periods.
  • In a preferred embodiment, the formulation comprises processed Morinda citrifolia juice, which has been discovered to have selective Cox-2 inhibitor characteristics. The precise mechanism by which processed Morinda citrifolia selectively inhibits Cox-2 is not known. A preferred method of the present invention comprises the consumption of processed Morinda citrifolia in therapeutic amounts.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It will be readily understood that the components of the present invention, as generally described herein, could be arranged and designed in a wide variety of different methods, configurations or formulations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, is not intended to limit the scope of the invention, as claimed, but is merely representative of the presently preferred embodiments of the invention.
  • The Indian Mulberry plant, known scientifically as Morinda Citrofolia L., is a shrub, or a small or medium sized tree three to ten meters high. It grows in tropical coastal regions around the world. The plant grows in the wild, and it has been cultivated in plantations and small individual growing plots. The Indian mulberry plant has somewhat rounded branches and evergreen, opposite (or spuriously alternate), dark, glossy, wavy, prominently-veined leaves. The leaves are broadly elliptic to oblong, pointed at both ends, ten to thirty centimeters in length and five to fifteen centimeters wide.
  • The Indian mulberry flowers are small, white, three to five-lobed, tubular, fragrant, and about one and one-quarter centimeters long. The flowers develop into compound fruits composed of many small drupes fused into an ovoid, ellipsoid or roundish, lumpy body, five to ten centimeters long, five to seven centimeters thick, with waxy, white or greenish-white or yellowish, semi-translucent skin. The fruit contains “eyes” on its surface, similar to a potato. The fruit is juicy, bitter, dull-yellow or yellowish-white, and contains numerous red-brown, hard oblong-triangular, winged, two-celled stones, each containing about four seeds.
  • When fully ripe, the fruit has a pronounced odor like rancid cheese. Although the fruit has been eaten by several nationalities as food, the most common use of the Indian mulberry plant was as a red and yellow dye source. Recently, there has been an interest in the nutritional and health benefits of the Indian mulberry plant.
  • Because the Morinda citrifolia fruit is for all practical purposes inedible, the fruit must be processed in order to make it palatable for human consumption and included in food products used to treat various ailments and diseases. Processed Morinda citrifolia juice can be prepared by separating seeds and peels from the juice and pulp of a ripened Morinda citrifolia fruit; filtering the pulp from the juice; and packaging the juice. Alternatively, rather than packaging the juice, the juice can be immediately included as an ingredient in another food product, frozen or pasteurized. In some embodiments, the juice and pulp can be pureed into a homogenous blend to be mixed with other ingredients. Other processes include freeze drying the fruit and juice. The fruit and juice can be reconstituted during production of the final juice product. Still other processes include air drying the fruit and juices, prior to being masticated.
  • In a currently preferred process of producing Morinda citrifolia juice, the fruit is either hand picked or picked by mechanical equipment. The fruit can be harvested when it is at least one inch (two to three centimeters) and up to twelve inches (twenty-four to thirty-six centimeters) in diameter. The fruit preferably has a color ranging from a dark-green through a yellow-green up to a white color, and gradations of color in between. The fruit is thoroughly cleaned after harvesting and before any processing occurs.
  • The fruit is allowed to ripen or age from zero to fourteen days, with most fruit being held from two to three days. The fruit is ripened or aged by being placed on equipment so it does not contact the ground. It is preferably covered with a cloth or netting material during aging, but can be aged without being covered. When ready for further processing the fruit is light in color, from a light green, light yellow, white or translucent color. The fruit is inspected for spoilage or for excessively green color and firmness. Spoiled and hard green fruit is separated from the acceptable fruit.
  • The ripened and aged fruit is preferably placed in plastic lined containers for further processing and transport. The containers of aged fruit can be held from zero to thirty days. Most fruit containers are held for seven to fourteen days before processing. The containers can optionally be stored under refrigerated conditions prior to further processing. The fruit is sunpacked from the storage containers and is processed through a manual or mechanical separator. The seeds and peel are separate from the juice and pulp. The juice can be filtered from the pulp.
  • The juice can be packaged into containers for storage and transport. Alternatively, the juice can be immediately processed into finished juice product. The containers can be stored in refrigerated, frozen, or room temperature conditions. The pulp can be blended in with the juice to make a puree. The Morinda citrifolia juice and puree can then be blended in a homogenous blend and mixed with other ingredients. The other ingredients consist of, but are not limited to water, fruit juice concentrates, flavorings, sweeteners, nutritional ingredients, botanicals, and colorings. The finished juice product is preferably heated and pasteurized at a minimum temperature of 181° F. (83° C.) or higher up to 212° F. (100° C.).
  • The product is filled and sealed into a final container of plastic, glass, or another suitable material that can withstand the processing temperatures. The containers are maintained at the filling temperature or may be cooled rapidly and then placed in a shipping container. The shipping containers are preferably wrapped with a material and in a manner to maintain or control the temperature of the product in the final containers.
  • Pure juice can be processed by separating the pulp from the juice through filtering equipment. The filtering equipment preferably consists of, but is not limited to, a centrifuge decanter, a screen filter with a size from one micron up to 2000 microns, more preferably less than 500 microns, a filter press, reverse osmosis filtration, or any other standard commercial filtration devices. The operating filter presser preferably ranges from 0.1 psig up to about 1000 psig. The flow rate preferably ranges from 0.1 gpm up to 1000 gpm, and more preferably between five and fifty gpm.
  • In addition to the processing methods described above, other methods of processing fruit into oil product, fiber product, and juice product are contemplated and may be employed. Several embodiments of formulations of processed juice, oil, and fiber can be used.
  • Some embodiments of the present invention encompass a method of treating and preventing various diseases and ailments in a human, which comprises administering to a mammal an effective amount of processed Morinda citrifolia.
  • The invention anticipates using the selective inhibition of Cox-2 property of processed Morinda citrifolia for the treatment and prevention of a variety of cancers, Alzheimer's, and a medley of other inflammation-induced diseases.
  • The processed Morinda citrifolia may be modified to increase the benefits for particular diseases and ailments. Oral administration is a preferred mode of administration. In some embodiments, the invention encompasses pharmaceutical compositions in combination with processed Morinda citrifolia for inhibiting the production of the prostaglandins by Cox-2 and treating or preventing the above-mentioned diseases and ailments comprising a pharmaceutically acceptable carrier, and a therapeutically effective amount of processed Morinda citrifolia described above. These could take the form of a tablet or capsule, solutions, or be included as an ingredient in another food product.
  • As with “pure” processed Morinda citrifolia , the compound may be useful for the prevention of cancers such as cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas; and well-differentiated hepatocellular carcinomas; as well as prevention of neuro-degenerative diseases, such as Alzheimer's, or any other inflammation-induced disease such as, heart disease, osteoporosis, diabetes and the like.
  • While the exact mechanisms by which processed Morinda citrifolia works are unknown, it is possible that Morinda citrifolia compounds thereof function in a manner similar to other selective Cox-2 inhibitors and are thereby useful in the treatment of a variety of prostaglandin-mediated or inflammation-induced diseases. This possibility is illustrated by Morinda citrifolia's ability to selectively inhibit Cox-2.
  • The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, or lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, syrups or elixirs. Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically excipients, which are suitable for the manufacture of tablets. Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including age, body weight, general health, gender, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular diseases undergoing therapy or in the process of incubation.
  • It is a great advantage of this invention that treatment or prevention may be carried out without causing gastric side effects of the type that can occur when NSAIDs are consumed for prolonged periods.
  • It is yet another great advantage of this invention that treatment or prevention may be carried out inexpensively, with less risk of heart failure than other Cox-2 inhibitors, by women during gestation, and by people of all ages.
  • Favorably, some embodiments of this invention provide a method of treating or preventing a variety of diseases, such as cancer of the colon, esophagus, skin, lungs, bladder, stomach, breast, head and neck, prostate, pancreas, and well-differentiated hepatocellular carcinomas, Alzheimer's disease and other degenerative and neuro-degenerative diseases, while inhibiting to a lesser extent Cox-1, which keeps the normal functions of the body.
  • Generally, the oral dosage will be administered from two to three times per day.
  • EXAMPLE 1
  • In an actual example, Morinda citrifolia juice was tested for Cox-1 and Cox-2 inhibition. Enzyme assays were conducted on Cox-1 and Cox-2. The source of the Cox-1 enzymes was human platelet. The substrate was fifty-million cell arachidonic acid in a one-percent DMSO vehicle. Pre-incubation time for the Cox-1 immuno assay was fifteen minutes at 37° C.; the incubation time and temperature were also fifteen minutes at 37° C. An incubation buffer was HBSS buffer with fifteen mMHEPS, at a pH of 7.4. EIA quantitation of the prostaglandin E2 was performed. A significance criteria of greater or equal to fifty-percent of maximum stimulation or inhibition was employed.
  • With respect to the Cox-2 enzyme assay, the source of the Cox-2 was human recombinant Sf9 insect cells and the substrate was 0.2 μm of arachidonic acid. The vehicle was a one-percent DMSO. Pre-incubation time and temperature was fifteen minutes at 37° C. Incubation time and temperature were five minutes at 37° C. The incubation buffer was 100 mM Tris-HCl, 1 mM glutathione, 1 uM hematin, and 500 uM of phenol at a pH of 7.7. EIA quantitation of the prostaglandin E2 was performed. The significance criteria of greater than or equal to fifty-percent of the maximum stimulation or inhibition was employed. The biochemical assay results show that at a concentration of 2.31 percent, inhibition of the Cox-l enzyme is four times less than the inhibition of the Cox-2 enzyme. Alternatively, this demonstrates Cox-2 is inhibited to four times the extent as Cox-1. Specifically, the results showed that inhibition of Cox-1 was twenty-percent while inhibition of the Cox-2 was almost sixty-percent. Where the concentration was increased to ten-percent, the inhibition of Cox-1 is shown to be approximately 83 percent and the inhibition of Cox-2 is approximately 84 percent. Thus, at greater concentrations, the ratio and selectivity of Cox-2 to Cox-1 seems to be limited. These results indicate that at a given concentration of Morinda citrifolia juice, the inhibition of Cox-2 was close to sixty-percent while the inhibition of Cox-l was only twenty percent. In sum, Morinda citrifolia juice shows selective Cox-2 inhibition.
  • In addition, to show the selectivity for Cox-2 inhibition of processed Morinda citrifolia juice, the study also suggests that Cox-2 selectivity with Morinda citrifolia juice is sensitive or related to concentration. The study shows that different concentrations produced different levels of selectivity between the enzymes. Because the mechanism by which Morinda citrifolia juice selectively inhibits Cox-2 is not known, the reason for the difference in concentration results cannot be determined definitively based on these data. However, it is clear that where an excessive concentration of Morinda citrifolia juice is used, Cox-2 selectivity is reduced. The Cox-2 selectivity, in a sense, is undermined by excessive, increased concentration. An increased concentration of Morinda citrifolia juice may result in non-selective inhibition of both Cox-1 and Cox-2. These results suggest that limiting undesirable Cox-l inhibition by Morinda citrifolia juice may be accomplished by appropriately limiting the concentration. Thus, with respect to at least one embodiment of the present invention, the data suggest the surprising result that in some circumstances “less” Morinda citrifolia juice provides “more” inhibition selectivity.
  • EXAMPLE 2
  • In this example, a person receives a wound that either causes internal inflammation or leaves a neoplasm, or, he or she experiences some other internal biochemical reaction where Cox-2 is over-expressed. Since Cox-2 expression has been implicated in tumor promotion1, he or she may delay, if not prevent altogether, tumor progression by consuming a predetermined amount of food product containing processed Morinda citrifolia.
    1According to Dr. Raymond N. DuBois of Vanderbilt University Medical Center in Nashville, Tenn., and colleagues.
  • EXAMPLE 3
  • In this example, a patient experiences the type of inflammation in the brain that leads to Alzheimer's. The individual desires to slow the progression of Alzheimer's by using a nonprescription, over-the-counter preparation. To slow the spread of Alzheimer's, the individual consumes a predetermined amount of food product containing processed Morinda citrifolia . The person intermittently consumes the food product containing the processed Morinda citrifolia until the disease's progress is slowed.
  • EXAMPLE 4
  • In this example, a person is suffering from cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas, as well as well-differentiated hepatocellular carcinomas. To treat the symptoms associated with these cancers, the person consumes a prescribed amount of food product containing processed Morinda citrifolia. The person intermittently consumes the food product containing processed Morinda citrifolia until the cancer symptoms lessen or are treated altogether.
  • EXAMPLE 5
  • In this example, a person is at increased risk of developing cancers of the colon; esophagus; skin; lungs; bladder; stomach; breast; head and neck; prostate; pancreas; as well as well-differentiated hepatocellular carcinomas. To prevent these cancers, the person consumes a prescribed amount of food product containing processed Morinda citrifolia. The person intermittently consumes the food product containing processed Morinda citrifolia until the cancers are sufficiently prevented or at least, hindered from progression.
  • EXAMPLE 6
  • In this example, a person suffers from a debilitating disease instigated by underlying inflammation. To inhibit or reduce inflammation, and thereby treat or prevent progression of the disease, this person intermittently consumes process Morinda citrifolia juice in therapeutic doses.

Claims (19)

1. A method for selectively inhibiting Cox-2 relative to Cox-1 in mammals, the method comprising:
administering to a mammal a composition comprising a processed Morinda citrifolia juice, wherein said Morinda citrifolia juice is present in an amount between about 2.0% and 10% by volume.
2. The method of claim 1, wherein the Morinda citrifolia is processed.
3. The method of claim 1, wherein the Morinda citrifolia is in liquid form.
4. The method of claim 1, wherein the Morinda citrifolia is included as an ingredient in a food product.
5. The method of claim 1, wherein the Morinda citrifolia is in capsule form.
6. The method of claim 1, wherein said dose of Morinda citrifolia inhibits the production of Cox-2-related prostaglandins that cause inflammation-induced disease, while at the same time inhibiting to a lesser extent, the production of Cox-1 related prostaglandins.
7-8. (canceled)
9. A method of treating and preventing disease comprising the steps of: obtaining a quantity of Morinda citrifolia juice and pulp; filtering the wet pulp from the juice;
pasteurizing the juice; and
providing a dose of said Morinda citrifolia juice for consumption; and inhibiting Cox-2 to a greater extent than Cox-1.
10. The method of claim 9, wherein the Morinda citrifolia juice is included as an ingredient in a food product.
11. A method of claim 9, wherein said dose is administered in an amount that is pre-determined to limit undesired Cox-1 inhibition relative to Cox-2 inhibition.
12. A method of treating and preventing disease comprising the steps of: obtaining a quantity of Morinda citrifolia juice and pulp; filtering the wet pulp from the juice, wherein the wet pulp has a fiber content of from 10% to 40%, by weight;
pasteurizing the pulp;
providing a therapeutic dose of said Morinda citrifolia pulp for consumption; and, inhibiting Cox-2 to a greater extent than Cox-1.
13. The method of claim 12, wherein the Morinda citrifolia pulp is included as an ingredient in a food product.
14. The method of claim 12, wherein said dose is administered in an amount that is predetermined to limit undesired Cox-1 inhibition relative to Cox-2 inhibition.
15. A method of alleviating the symptoms, preventing and further inhibiting the proliferation of certain diseases and maladies in mammals, said method comprising the steps of: administering to a patient, at least two ounces of processed Morinda citrifolia juice twice daily on an empty stomach for a period of at least two months, wherein said step of administering to a patient will have the physiological effect of inhibiting Cox-2 to a greater extent than Cox-1.
16. The method of claim 15, wherein said diseases comprise those selected from the group consisting of cancer of the colon; cancer of the esophagus; skin cancer; lung cancer; cancer of the bladder; cancer of the stomach; breast cancer; head and neck cancer; prostate cancer; cancer of the pancreas; well-differentiated hepatocellular carcinomas; Alzheimer's disease; neuro-degenerative diseases; inflammation-induced diseases; heart disease; osteoporosis and diabetes.
17. The method as recited claim 1, wherein the said composition further comprises Morinda citrifolia oil.
18. The method as recited in claim 1, wherein the said composition further comprises pulp blended in with juice to form a puree.
19. The method as recited in claim 1, further comprising a step of providing a composition comprising Morinda citrifolia juice present in an amount between 2.0% and 10% by volume to treat an inflammation-endues disease with a human.
20. A method for selectively inhibiting COX-2 relative to COX-1 comprising:
administering to a mammal a composition comprising a processed Morinda citrifolia juice two times per day, wherein said dosage is less than 0.1 ml per kg of body weight of the mammal
US11/376,066 2001-04-17 2006-03-15 Palliative effects of morinda citrifolia oil and juice Abandoned US20060275359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/376,066 US20060275359A1 (en) 2001-04-17 2006-03-15 Palliative effects of morinda citrifolia oil and juice
US11/620,914 US20070218153A1 (en) 2006-03-15 2007-01-08 Palliative Effects of Morinda Citrifolia Oil and Juice

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US28438301P 2001-04-17 2001-04-17
US28528901P 2001-04-20 2001-04-20
US28530401P 2001-04-20 2001-04-20
US10/124,627 US7018662B2 (en) 2001-04-17 2002-04-17 Palliative effects of morinda citrifolia oil and juice
US11/376,066 US20060275359A1 (en) 2001-04-17 2006-03-15 Palliative effects of morinda citrifolia oil and juice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/124,627 Division US7018662B2 (en) 2001-04-17 2002-04-17 Palliative effects of morinda citrifolia oil and juice

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/620,914 Division US20070218153A1 (en) 2006-03-15 2007-01-08 Palliative Effects of Morinda Citrifolia Oil and Juice

Publications (1)

Publication Number Publication Date
US20060275359A1 true US20060275359A1 (en) 2006-12-07

Family

ID=27494551

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/124,627 Expired - Fee Related US7018662B2 (en) 2001-04-17 2002-04-17 Palliative effects of morinda citrifolia oil and juice
US11/376,066 Abandoned US20060275359A1 (en) 2001-04-17 2006-03-15 Palliative effects of morinda citrifolia oil and juice

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/124,627 Expired - Fee Related US7018662B2 (en) 2001-04-17 2002-04-17 Palliative effects of morinda citrifolia oil and juice

Country Status (4)

Country Link
US (2) US7018662B2 (en)
EP (1) EP1389124A4 (en)
JP (1) JP2005511479A (en)
WO (1) WO2002083159A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184137A1 (en) * 2005-11-29 2007-08-09 Palu Afa K Morinda Citrifolia L. Based Formulations for Inhibiting Matrix Metalloproteinase Enzymes
US20070218146A1 (en) * 2004-01-15 2007-09-20 Palu Afa K Lipoxygenase and cyclooxygenase inhibition
US20080206368A1 (en) * 2007-02-26 2008-08-28 Mian-Ying Wang Administration of Morinda Citrifolia L. Based Formulations to Increase Birth Rates
US20090053341A1 (en) * 2007-08-21 2009-02-26 Afa Kehaati Palu Preventative and Treatment Effects of Morinda Citrifolia as an Aromatase Inhibitor
US8025910B2 (en) 2006-05-12 2011-09-27 Tahitian Noni International, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US8535741B2 (en) 2006-05-12 2013-09-17 Morinda, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US8574642B2 (en) 2000-12-05 2013-11-05 Tahitian Noni International, Inc. Antiviral Morinda citrifolia L. based formulations and methods of administration
US8652546B2 (en) 2007-09-06 2014-02-18 Tahitian Noni International, Inc. Morinda citrifolia based formulations for regulating T cell immunomodulation in neonatal stock animals
US8790727B2 (en) 2000-12-05 2014-07-29 Tahitian Noni International, Inc. Morinda citrifolia and iridoid based formulations

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217394A1 (en) * 2000-12-05 2011-09-08 Brett Justin West Iridoid Based Formulations
US6855345B2 (en) * 2001-11-02 2005-02-15 Morinda, Inc. Preventative and treatment effects of Morinda citrifolia on diabetes and its related conditions
US20110171333A1 (en) * 2000-12-05 2011-07-14 Bryant Wadsworth Morinda Citrifolia Based Antioxidant and Antimicrobial Formulations for Improved Color Stability and Increased Shelf Life of Various Meat Products
US20040192761A1 (en) * 2003-03-25 2004-09-30 Palu Afa Kehaati Preventative and treatment effects of morinda citrifolia as an aromatase inhibitor
US20070196527A1 (en) * 2006-02-23 2007-08-23 Jensen Claude J Preventative and treatment effects of Morinda citrifolia on Osteoarthritis and its related conditions
US8501245B2 (en) * 2000-12-05 2013-08-06 Morinda, Inc. Selectively inhibiting estrogen production and providing estrogenic effects in the human body
WO2003020296A1 (en) 2001-08-31 2003-03-13 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College INHIBITION OF ANGIOGENESIS AND DESTRUCTION OF ANGIOGENIC VESSELS WITH EXTRACTS OF NONI JUICE $i(MORINDA CITRIFOLIA)
US7070813B2 (en) * 2001-11-02 2006-07-04 Morinda, Inc. Preventative and treatment effects of morinda citrifolia as a colon cancer cell growth inhibitor
US20030086990A1 (en) * 2001-11-02 2003-05-08 Mian-Ying Wang Method for treating carbon tetra-cloride induced liver damage by administering morinda citrifolia
US20110160057A1 (en) * 2001-11-14 2011-06-30 Bryant Wadsworth Morinda Citrifolia Based Antimicrobial Formulations
US7442395B2 (en) * 2002-11-14 2008-10-28 Tahitian Noni International, Inc. Formulation for treating candidiasis using Morinda citrifolia
US20070184135A1 (en) * 2003-03-26 2007-08-09 Palu Afa K Morinda citrifolia-based formulation 5-LOX and 15-LOX
US20060269630A1 (en) * 2003-04-16 2006-11-30 Palu Afa K Morinda citrifolia as a 5-Lipoxygenase inhibitor
JP4073826B2 (en) * 2003-06-04 2008-04-09 タヒチアン ノニ インターナショナル インコーポレーテッド Agricultural vital agent containing extract of Yaeyama Aoki
US20050037101A1 (en) * 2003-08-12 2005-02-17 Mian-Ying Wang Preventative effects of morinda citrifolia on mammary breast cancer
US20050118291A1 (en) * 2003-09-10 2005-06-02 Mian-Ying Wang Formulations and methods for treating breast cancer with Morinda citrifolia and methylsulfonymethane
US20070259060A1 (en) * 2003-08-12 2007-11-08 Mian-Ying Wang Formulations and Methods for Treating Breast Cancer with Morinda Citrifolia and Methylsulfonymethane
US20060204601A1 (en) * 2005-03-09 2006-09-14 Palu Afa K Formulations and methods for preventing and treating substance abuse and addiction
US20060280818A1 (en) * 2005-05-26 2006-12-14 Palu Afa K Nicotinic acetylcholine receptor antagonist
US20070122507A1 (en) * 2005-05-26 2007-05-31 Palu Afa K Histone deacetylase and tumor necrosis factor converting enzyme inhibition
US20070154579A1 (en) * 2005-11-29 2007-07-05 Palu Afa K Morinda Citrifolia Based Formulation And Methods For Weight Management
US20070166417A1 (en) * 2005-11-29 2007-07-19 Palu Afa K Formulation and Methods for Use of Morinda Citrifolia Seed Oil
US20070281903A1 (en) * 2006-05-04 2007-12-06 Palu Afa K Morinda Citrifolia-Based Formulation 5-LOX And 15-LOX
US8668944B2 (en) * 2007-04-03 2014-03-11 Donna Greco Topical oil for treating physical ailments and method for making and applying the same
US20080317890A1 (en) * 2007-06-21 2008-12-25 Claude Jarakae Jensen Method for treating visual impairment through the prophylactic administration of a morinda citrifolia-based naturaceutical
US20090196944A1 (en) * 2008-02-01 2009-08-06 Brad Rawson Methods of Manufacture of Morinda Citrifolia Based Compositions for Treatment of Anti-Inflammatory Diseases through Inhibition of Cox-1, Cox-2, Interleukin -1beta, Interleukin-6, TNF-alpha, HLE, and iNOS
US20110206786A1 (en) * 2010-02-23 2011-08-25 Brett Justin West Acai and Iridoid Based Formulations

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039559A (en) * 1974-07-18 1977-08-02 Eisai Co., Ltd. Aliphatic carboxylic acid esters of Vitamin E and process for preparation thereof
US4409144A (en) * 1978-01-19 1983-10-11 Research Corporation Of The University Of Hawaii Xeronine, a new alkaloid, useful in medical, food and industrial fields
US4463025A (en) * 1980-07-22 1984-07-31 The Procter & Gamble Company Process for preparing a citrus fruit juice concentrate
US4543212A (en) * 1978-01-19 1985-09-24 Research Corporation Of The University Of Hawaii Xeronine, a new alkaloid, useful in medical, food and industrial fields
US4666606A (en) * 1978-01-19 1987-05-19 The Research Corporation Of The University Of Hawaii Method for eliminating grease and odors from sewage systems
US4793991A (en) * 1986-01-31 1988-12-27 Slimak Karen M Hypoallergenic cosmetics, lip balms and lip sticks
US4948785A (en) * 1987-07-10 1990-08-14 Etablissements Guyomarc'h S. A. Plant polysaccharide fractions inducing prolactin in mammals
US4966051A (en) * 1987-12-28 1990-10-30 Casio Computer Co., Ltd. Effect tone generating apparatus
US5106634A (en) * 1989-09-11 1992-04-21 Clovis Grain Processing, Ltd. Process for the co-production of ethanol and an improved human food product from cereal grains
US5213836A (en) * 1991-09-18 1993-05-25 American Crystal Sugar Company Method of preparation of sugar beet fiber material
US5268467A (en) * 1988-05-23 1993-12-07 Verbiscar Anthony J Immunomodulatory polysaccharide fractions from Astragalus plants
US5275834A (en) * 1988-09-05 1994-01-04 Institut National De La Recherche Agronomique Plant-wall-rich product with enhanced water-soluble polysaccharide fraction, method of making same
US5288491A (en) * 1992-09-24 1994-02-22 Herbert Moniz Noni (Morinda Citrifolia) as a pharmaceutical product
US5431927A (en) * 1992-06-16 1995-07-11 Colgate-Palmolive Company Pet food product having oral care properties
US5472699A (en) * 1991-07-01 1995-12-05 Avon Products, Inc. Composition and method for visibly reducing the size of skin pores
US5503825A (en) * 1994-01-10 1996-04-02 Lane; Barry Lip balm composition
US5595756A (en) * 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5616569A (en) * 1994-03-28 1997-04-01 The Iams Company Pet food product containing fermentable fibers and process for treating gastrointestinal disorders
US5717860A (en) * 1995-09-20 1998-02-10 Infonautics Corporation Method and apparatus for tracking the navigation path of a user on the world wide web
US5725875A (en) * 1993-01-08 1998-03-10 Microbarriers Protective skin composition
US5736174A (en) * 1994-03-14 1998-04-07 Arco Chemical Technology, L.P. Alkoxylated alcohol fat substitutes
US5744187A (en) * 1996-12-16 1998-04-28 Gaynor; Mitchel L. Nutritional powder composition
US5770217A (en) * 1997-07-02 1998-06-23 Atlatl, Inc. Dietary supplement for hematological, immune and appetite enhancement
US5776441A (en) * 1996-08-30 1998-07-07 Avon Products, Inc. Lip treatment containing live yeast cell derivative
US5843499A (en) * 1995-12-08 1998-12-01 The United States Of America As Represented By The Secretary Of Agriculture Corn fiber oil its preparation and use
US5851573A (en) * 1997-04-29 1998-12-22 The Iams Company Pet food composition for large breed puppies and method for promoting proper skeletal growth
US5922766A (en) * 1997-07-02 1999-07-13 Acosta; Phyllis J. B. Palatable elemental medical food
US5961998A (en) * 1997-07-08 1999-10-05 L'oreal Glossy composition containing aromatic oils thickened by a polysaccharide ether
US5962043A (en) * 1996-02-29 1999-10-05 Seal Rock Technologies Incorporated Weight reduction method for dogs and other pets
US5976549A (en) * 1998-07-17 1999-11-02 Lewandowski; Joan Method to reduce bad breath in a pet by administering raw garlic
US6029141A (en) * 1997-06-27 2000-02-22 Amazon.Com, Inc. Internet-based customer referral system
US6039952A (en) * 1997-10-22 2000-03-21 The Iams Company Composition and method for improving clinical signs in animals with renal disease
US6086910A (en) * 1997-09-19 2000-07-11 The Howard Foundation Food supplements
US6133323A (en) * 1997-04-09 2000-10-17 The Iams Company Process for enhancing immune response in animals using β-carotene as a dietary supplement
US6136301A (en) * 1997-05-30 2000-10-24 E-L Management Corp. Lipid mix for lip product
US6139897A (en) * 1998-03-24 2000-10-31 Kao Corporation Oil or fat composition containing phytosterol
US6156355A (en) * 1998-11-02 2000-12-05 Star-Kist Foods, Inc. Breed-specific canine food formulations
US6214351B1 (en) * 1999-08-27 2001-04-10 Morinda, Inc. Morinda citrifolia oil
US6254913B1 (en) * 1999-08-27 2001-07-03 Morinda, Inc. Morinda citrifolia dietary fiber and method
US6261566B1 (en) * 1999-10-22 2001-07-17 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic compositions containing mulberry extract and retinoids
US6280751B1 (en) * 1997-03-10 2001-08-28 Jane Clarissa Fletcher Essential oil composition
US6291533B1 (en) * 1999-12-22 2001-09-18 Vitamerica, Inc. Dietary supplements for each specific blood type
US6299925B1 (en) * 1999-06-29 2001-10-09 Xel Herbaceuticals, Inc. Effervescent green tea extract formulation
US20010033871A1 (en) * 2000-03-02 2001-10-25 Bo Gidlund Use of a composition
US6387370B1 (en) * 2001-01-19 2002-05-14 A. Glenn Braswell Compositions containing extracts of Morinda citrifolia, red wine, prune, blueberry, pomegranate, apple and enzyme mixture
US20020068102A1 (en) * 2000-12-01 2002-06-06 Su Chen Xing Reducing cellular damage in the human body
US6405948B1 (en) * 1997-07-18 2002-06-18 Pulsewave Llc Liberating intracellular matter from biological material
US20020090406A1 (en) * 2000-12-05 2002-07-11 Su Chen Xing Tahitian noni juice on COX-1 and COX-2 and tahitian noni juice as a selective COX-2 inhibitor
US6477509B1 (en) * 2000-01-06 2002-11-05 Efunz.Com Internet marketing method and system
US20020187168A1 (en) * 2001-03-28 2002-12-12 Jensen Claude Jarkae Morinda Citrifolia (Noni) enhanced cosmetic skin care toner
US20030060405A1 (en) * 1998-07-30 2003-03-27 Kleinman Hynda K. Compositions and methods for promoting wound healing and tissue repair
US20030086990A1 (en) * 2001-11-02 2003-05-08 Mian-Ying Wang Method for treating carbon tetra-cloride induced liver damage by administering morinda citrifolia
US20030108629A1 (en) * 2001-07-17 2003-06-12 Chou Wen Hsien Compositions and methods for prostate and kidney health and disorders, an herbal preparation
US6589514B2 (en) * 2001-04-17 2003-07-08 Morinda, Inc. Cosmetic intensive repair serum with morinda citrifolia
US20030206895A1 (en) * 1998-11-13 2003-11-06 Sigma-Tau Healthscience S.P.A. Antioxidant composition comprising propionyl L-carnitine and a flavonoid against throm-bosis and atherosclerosis
US6737089B2 (en) * 1999-08-27 2004-05-18 Morinda, Inc. Morinda citrifolia (Noni) enhanced animal food product
US6749875B2 (en) * 2000-03-03 2004-06-15 Citrus Sensation, Pty. Ltd. Fruit and vegetable preservative
US6855354B2 (en) * 2001-02-13 2005-02-15 Morinda, Inc. Freeze concentration process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132829A (en) * 1985-12-05 1987-06-16 Eisai Co Ltd Remedy for hepatitis
WO1988005304A1 (en) * 1987-01-21 1988-07-28 William Blanc & Cie Processes for the preparation of medicinal compositions, compositions obtained by these processes and use thereof for the preparation of medicines against viral hepatitis b and acquired immunodeficiency syndrome
JPH0687737A (en) * 1992-09-07 1994-03-29 Tonen Corp Anti-aids agent
JPH0687736A (en) * 1992-09-07 1994-03-29 Kazuo Umezawa Anticancer agent
JPH08208461A (en) * 1995-02-08 1996-08-13 Terumo Corp Anti-helicobacter pyrori agent
JPH08217686A (en) * 1995-02-08 1996-08-27 Terumo Corp Anti-helicovbacter pylori medicine containing extract of dried root of morinda citrifolia
FR2783137A1 (en) * 1998-09-10 2000-03-17 Royal Tahiti Noni Preparation of composition based on extract of fruit of Polynesian plant Morinda Citrifolia, for use as invigorating-health improving drink, involves filtration, de-pectinization, heating and final filtration
JP2004529077A (en) * 2000-12-05 2004-09-24 モリンダ・インコーポレーテッド Cancer Preventive Effect of Morinda Citrifolia
US6632459B2 (en) * 2000-12-11 2003-10-14 Nutricia N.V. Chlorogenic acid and an analog thereof for immune system stimulation

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039559A (en) * 1974-07-18 1977-08-02 Eisai Co., Ltd. Aliphatic carboxylic acid esters of Vitamin E and process for preparation thereof
US4409144A (en) * 1978-01-19 1983-10-11 Research Corporation Of The University Of Hawaii Xeronine, a new alkaloid, useful in medical, food and industrial fields
US4543212A (en) * 1978-01-19 1985-09-24 Research Corporation Of The University Of Hawaii Xeronine, a new alkaloid, useful in medical, food and industrial fields
US4666606A (en) * 1978-01-19 1987-05-19 The Research Corporation Of The University Of Hawaii Method for eliminating grease and odors from sewage systems
US4463025A (en) * 1980-07-22 1984-07-31 The Procter & Gamble Company Process for preparing a citrus fruit juice concentrate
US4793991A (en) * 1986-01-31 1988-12-27 Slimak Karen M Hypoallergenic cosmetics, lip balms and lip sticks
US4948785A (en) * 1987-07-10 1990-08-14 Etablissements Guyomarc'h S. A. Plant polysaccharide fractions inducing prolactin in mammals
US5110803A (en) * 1987-07-10 1992-05-05 Guyomarc'h Nutrition Animale Plant polysaccharide fractions inducing prolactin in mammals
US4966051A (en) * 1987-12-28 1990-10-30 Casio Computer Co., Ltd. Effect tone generating apparatus
US5268467A (en) * 1988-05-23 1993-12-07 Verbiscar Anthony J Immunomodulatory polysaccharide fractions from Astragalus plants
US5275834A (en) * 1988-09-05 1994-01-04 Institut National De La Recherche Agronomique Plant-wall-rich product with enhanced water-soluble polysaccharide fraction, method of making same
US5106634A (en) * 1989-09-11 1992-04-21 Clovis Grain Processing, Ltd. Process for the co-production of ethanol and an improved human food product from cereal grains
US5472699A (en) * 1991-07-01 1995-12-05 Avon Products, Inc. Composition and method for visibly reducing the size of skin pores
US5213836A (en) * 1991-09-18 1993-05-25 American Crystal Sugar Company Method of preparation of sugar beet fiber material
US5431927A (en) * 1992-06-16 1995-07-11 Colgate-Palmolive Company Pet food product having oral care properties
US5288491A (en) * 1992-09-24 1994-02-22 Herbert Moniz Noni (Morinda Citrifolia) as a pharmaceutical product
US5725875A (en) * 1993-01-08 1998-03-10 Microbarriers Protective skin composition
US5595756A (en) * 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5503825A (en) * 1994-01-10 1996-04-02 Lane; Barry Lip balm composition
US5736174A (en) * 1994-03-14 1998-04-07 Arco Chemical Technology, L.P. Alkoxylated alcohol fat substitutes
US5616569A (en) * 1994-03-28 1997-04-01 The Iams Company Pet food product containing fermentable fibers and process for treating gastrointestinal disorders
US5717860A (en) * 1995-09-20 1998-02-10 Infonautics Corporation Method and apparatus for tracking the navigation path of a user on the world wide web
US5843499A (en) * 1995-12-08 1998-12-01 The United States Of America As Represented By The Secretary Of Agriculture Corn fiber oil its preparation and use
US5962043A (en) * 1996-02-29 1999-10-05 Seal Rock Technologies Incorporated Weight reduction method for dogs and other pets
US5776441A (en) * 1996-08-30 1998-07-07 Avon Products, Inc. Lip treatment containing live yeast cell derivative
US5744187A (en) * 1996-12-16 1998-04-28 Gaynor; Mitchel L. Nutritional powder composition
US6280751B1 (en) * 1997-03-10 2001-08-28 Jane Clarissa Fletcher Essential oil composition
US6133323A (en) * 1997-04-09 2000-10-17 The Iams Company Process for enhancing immune response in animals using β-carotene as a dietary supplement
US5851573A (en) * 1997-04-29 1998-12-22 The Iams Company Pet food composition for large breed puppies and method for promoting proper skeletal growth
US6136301A (en) * 1997-05-30 2000-10-24 E-L Management Corp. Lipid mix for lip product
US6029141A (en) * 1997-06-27 2000-02-22 Amazon.Com, Inc. Internet-based customer referral system
US5922766A (en) * 1997-07-02 1999-07-13 Acosta; Phyllis J. B. Palatable elemental medical food
US5770217A (en) * 1997-07-02 1998-06-23 Atlatl, Inc. Dietary supplement for hematological, immune and appetite enhancement
US5961998A (en) * 1997-07-08 1999-10-05 L'oreal Glossy composition containing aromatic oils thickened by a polysaccharide ether
US6405948B1 (en) * 1997-07-18 2002-06-18 Pulsewave Llc Liberating intracellular matter from biological material
US6086910A (en) * 1997-09-19 2000-07-11 The Howard Foundation Food supplements
US6039952A (en) * 1997-10-22 2000-03-21 The Iams Company Composition and method for improving clinical signs in animals with renal disease
US6139897A (en) * 1998-03-24 2000-10-31 Kao Corporation Oil or fat composition containing phytosterol
US5976549A (en) * 1998-07-17 1999-11-02 Lewandowski; Joan Method to reduce bad breath in a pet by administering raw garlic
US20030060405A1 (en) * 1998-07-30 2003-03-27 Kleinman Hynda K. Compositions and methods for promoting wound healing and tissue repair
US6156355A (en) * 1998-11-02 2000-12-05 Star-Kist Foods, Inc. Breed-specific canine food formulations
US20030206895A1 (en) * 1998-11-13 2003-11-06 Sigma-Tau Healthscience S.P.A. Antioxidant composition comprising propionyl L-carnitine and a flavonoid against throm-bosis and atherosclerosis
US6299925B1 (en) * 1999-06-29 2001-10-09 Xel Herbaceuticals, Inc. Effervescent green tea extract formulation
US6254913B1 (en) * 1999-08-27 2001-07-03 Morinda, Inc. Morinda citrifolia dietary fiber and method
US6417157B1 (en) * 1999-08-27 2002-07-09 Morinda, Inc. Morinda citrifolia oil
US6737089B2 (en) * 1999-08-27 2004-05-18 Morinda, Inc. Morinda citrifolia (Noni) enhanced animal food product
US6214351B1 (en) * 1999-08-27 2001-04-10 Morinda, Inc. Morinda citrifolia oil
US6528106B2 (en) * 1999-08-27 2003-03-04 Morinda, Inc. Morinda citrifolia dietary fiber
US6261566B1 (en) * 1999-10-22 2001-07-17 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic compositions containing mulberry extract and retinoids
US6291533B1 (en) * 1999-12-22 2001-09-18 Vitamerica, Inc. Dietary supplements for each specific blood type
US6477509B1 (en) * 2000-01-06 2002-11-05 Efunz.Com Internet marketing method and system
US20010033871A1 (en) * 2000-03-02 2001-10-25 Bo Gidlund Use of a composition
US6436449B2 (en) * 2000-03-02 2002-08-20 Bo Gidlund Use of a composition
US6749875B2 (en) * 2000-03-03 2004-06-15 Citrus Sensation, Pty. Ltd. Fruit and vegetable preservative
US20020068102A1 (en) * 2000-12-01 2002-06-06 Su Chen Xing Reducing cellular damage in the human body
US20030086989A1 (en) * 2000-12-05 2003-05-08 Jensen Claude Jarkae Morinda citrifolia enhanced lip treatment
US20020090406A1 (en) * 2000-12-05 2002-07-11 Su Chen Xing Tahitian noni juice on COX-1 and COX-2 and tahitian noni juice as a selective COX-2 inhibitor
US6387370B1 (en) * 2001-01-19 2002-05-14 A. Glenn Braswell Compositions containing extracts of Morinda citrifolia, red wine, prune, blueberry, pomegranate, apple and enzyme mixture
US6855354B2 (en) * 2001-02-13 2005-02-15 Morinda, Inc. Freeze concentration process
US20020187168A1 (en) * 2001-03-28 2002-12-12 Jensen Claude Jarkae Morinda Citrifolia (Noni) enhanced cosmetic skin care toner
US6589514B2 (en) * 2001-04-17 2003-07-08 Morinda, Inc. Cosmetic intensive repair serum with morinda citrifolia
US20030108629A1 (en) * 2001-07-17 2003-06-12 Chou Wen Hsien Compositions and methods for prostate and kidney health and disorders, an herbal preparation
US20030086990A1 (en) * 2001-11-02 2003-05-08 Mian-Ying Wang Method for treating carbon tetra-cloride induced liver damage by administering morinda citrifolia

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574642B2 (en) 2000-12-05 2013-11-05 Tahitian Noni International, Inc. Antiviral Morinda citrifolia L. based formulations and methods of administration
US8790727B2 (en) 2000-12-05 2014-07-29 Tahitian Noni International, Inc. Morinda citrifolia and iridoid based formulations
US20070218146A1 (en) * 2004-01-15 2007-09-20 Palu Afa K Lipoxygenase and cyclooxygenase inhibition
US20070184137A1 (en) * 2005-11-29 2007-08-09 Palu Afa K Morinda Citrifolia L. Based Formulations for Inhibiting Matrix Metalloproteinase Enzymes
US8025910B2 (en) 2006-05-12 2011-09-27 Tahitian Noni International, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US8535741B2 (en) 2006-05-12 2013-09-17 Morinda, Inc. Method and composition for administering bioactive compounds derived from Morinda citrifolia
US20080206368A1 (en) * 2007-02-26 2008-08-28 Mian-Ying Wang Administration of Morinda Citrifolia L. Based Formulations to Increase Birth Rates
US20090053341A1 (en) * 2007-08-21 2009-02-26 Afa Kehaati Palu Preventative and Treatment Effects of Morinda Citrifolia as an Aromatase Inhibitor
US8652546B2 (en) 2007-09-06 2014-02-18 Tahitian Noni International, Inc. Morinda citrifolia based formulations for regulating T cell immunomodulation in neonatal stock animals

Also Published As

Publication number Publication date
US20020168434A1 (en) 2002-11-14
EP1389124A4 (en) 2004-12-15
JP2005511479A (en) 2005-04-28
WO2002083159B1 (en) 2003-01-23
US7018662B2 (en) 2006-03-28
EP1389124A1 (en) 2004-02-18
WO2002083159A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
US7018662B2 (en) Palliative effects of morinda citrifolia oil and juice
US20020090406A1 (en) Tahitian noni juice on COX-1 and COX-2 and tahitian noni juice as a selective COX-2 inhibitor
US7033624B2 (en) Preventative and treatment effects of Morinda citrifolia on osteoarthritis and its related conditions
US7070813B2 (en) Preventative and treatment effects of morinda citrifolia as a colon cancer cell growth inhibitor
US6855345B2 (en) Preventative and treatment effects of Morinda citrifolia on diabetes and its related conditions
US20050202108A1 (en) Methods and compositions for inhibiting angiotensin converting and chymase enzymes
US7014873B2 (en) Method and formulation for treating candidiasis using morinda citrifolia
US20060088611A1 (en) Morinda citrifolia-based formulations and methods for weight management
US20120237626A9 (en) Profiles of lipid proteins and inhibiting HMG-CoA reductase
US20050202109A1 (en) Methods and compositions for inhibiting monoamine oxidase and catechol-o-methyltransferase
AU2004291030B2 (en) Preventative effects of morinda citrifolia on mammary breast cancer
US20050118291A1 (en) Formulations and methods for treating breast cancer with Morinda citrifolia and methylsulfonymethane
US20030108630A1 (en) Morinda citrifolia enhanced naturaceutical formulation and method for treating and preventing migraine headaches
US20070166416A1 (en) Formulations and Methods for Preventing and Treating Substance Abuse and Addiction
US20080206376A1 (en) Methods and compositions for inhibiting angiotensin converting and chymase enzymes
US20090022828A1 (en) Methods and compositions for inhibiting angiotensin converting and chymase enzymes
US20070218153A1 (en) Palliative Effects of Morinda Citrifolia Oil and Juice
US20070196527A1 (en) Preventative and treatment effects of Morinda citrifolia on Osteoarthritis and its related conditions
US20070259060A1 (en) Formulations and Methods for Treating Breast Cancer with Morinda Citrifolia and Methylsulfonymethane
WO2007064547A2 (en) Morinda citrifolia based formulation and methods for weight management

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION